CLASS XII INFORMATICS PRACTICES PRACTICAL LIST

Write a NumPy program to create a $3 x 3$ matrix with values ranging from 2 to 10 import numpy as np
$x=n p . a r a n g e(2,11) \cdot r e s h a p e(3,3)$
print(x)

Write a NumPy program to generate six random integers between 25 and 55.
import numpy as np $x=n p \cdot r a n d o m \cdot r a n d i n t(l o w=25$, high=55, size=6)
print(x)

Write a Pandas program to convert a Panda module Series to Python list and it's type import pandas as pd
ds = pd.Series([2, 4, 6, 8, 10])
print("Pandas Series and type")
print(ds)
print(type(ds))
print("Convert Pandas Series to Python list")
print(ds.tolist())
print(type(ds.tolist()))

Write a Pandas program to compare the elements of the two Pandas Series??
import pandas as pd
ds1 = pd.Series([2, 4, 6, 8, 10])
ds2 $=$ pd.Series $([1,3,5,7,10])$
print("Series1:")
print(ds1)
print("Series2:")
print(ds2)
print("Compare the elements of the said Series:")
print("Equals:")
print(ds1 == ds2)
print("Greater than:")
print(ds1 > ds2)
print("Less than:")
print(ds1 < ds2)

Write a Python program to convert a dictionary to a Pandas series. Sample Series: Dictionary:
\{'a': 100, 'b': 200, 'c': 300, 'd': 400, 'e': 800\}
Converted series:
a 100
b 200
c 300
d 400
e 800
dtype: int64

```
import pandas as pd
d1 = {'a': 100, 'b': 200, 'c':300, 'd':400, 'e':800}
print("Dictionary:")
print(d1)
s1 = pd.Series(d1)
print("Converted series:")
print(s1)
```

Write a Pandas program to add, subtract, multiple and divide two Pandas Series import pandas as pd
ds1 = pd.Series([2, 4, 6, 8, 10])
ds2 $=\operatorname{pd.Series}([1,3,5,7,9])$
$\mathrm{ds}=\mathrm{ds} 1+\mathrm{ds} 2$
print("Add two Series:")
print(ds)
print("Subtract two Series:")
$\mathrm{ds}=\mathrm{ds} 1-\mathrm{ds} 2$
print(ds)
print("Multiply two Series:")
$\mathrm{ds}=\mathrm{ds} 1 * \mathrm{ds} 2$
print(ds)
print("Divide Series1 by Series2:")
$\mathrm{ds}=\mathrm{ds} 1 / \mathrm{ds} 2$
print(ds)

Write a program to sort the element of Series S1 into S2
import pandas as pd
s1 = pd.Series(['100', '200', 'python', '300.12', '400'])
print("Series before sorting:")
print(s)
s2 = pd.Series(s1).sort_values()
print("Series After sorting:")
print(s2)

Write a NumPy program to reverse an array Ar
import numpy as np
$\mathrm{Ar}=\mathrm{np}$. arange $(12,45,13,45,56,38)$
print("Original Array:")
print (Ar)
print("Reverse array:")
$\operatorname{Ar}=\operatorname{Ar}[::-1]$
print(Ar)

Write a NumPy program to create a 8×8 matrix and fill it with a checkerboard pattern.

Checkerboard pattern:
[$\left[\begin{array}{llllllll}0 & 1 & 0 & 1 & 0 & 1 & 0 & 1\end{array}\right]$
[1010101010]
$\left[\begin{array}{lllllll}0 & 1 & 0 & 1 & 0 & 1 & 0\end{array}\right]$
[1010101010]
$\left[\begin{array}{lllllll}0 & 1 & 0 & 1 & 0 & 1 & 0\end{array}\right]$
[1010101010]
$\left[\begin{array}{llllll}0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1\end{array}\right]$
[1010101010]]

```
import numpy as np
x = np.ones((3,3))
print("Checkerboard pattern:")
x = np.zeros(( 8, 8),dtype=int)
x[1::2,::2] = 1
x[::2,1::2] = 1
print(x)
```

0 Write a NumPy program to append values to the end of an array. Expected Output: Original array:
[10, 20, 30]
After append values to the end of the array:
[102030405060708090]

```
import numpy as np
x = [10, 20, 30]
print("Original array:")
print(x)
x = np.append(x, [40, 50, 60,70, 80, 90])
print("After append values to the end of the array:")
print(x)
```

Write a NumPy program to test whether each element of a 1-D array is also present in a second array

```
import numpy as np
```

$\operatorname{ar1}=n p . \operatorname{array}([0,12,22,40,67])$
print("Array1: ", ar1)
$\operatorname{ar2}=[0,22]$
print("Array2: ", ar2)
print("Compare each element of array1 and array2")
print(np.in1d(array1, array2))

Write a NumPy program to find the number of elements of an array, length of one
array element in bytes and total bytes consumed by the elements
import numpy as np
$x=n p \cdot \operatorname{array}([1,2,3]$, dtype=np.float64)
print("Size of the array: ", x.size)
print("Length of one array element in bytes: ", x.itemsize)
print("Total bytes consumed by the elements of the array: ", x.nbytes)

Write a Pandas program to select the rows where the height is not known, i.e. is NaN. 'name': ['Asha', 'Radha', 'Kamal', 'Divy', 'Anjali'], 'height': [5.5, 5, np.nan, 5.9, np.nan],
'age': [11, 23, 22, 33, 22]

```
import pandas as pd
import numpy as np
pers_data = {'name': ['Asha', 'Radha', 'Kamal', 'Divy',
'Anjali'],
    'height': [ 5.5, 5, np.nan, 5.9, np.nan],
    'age': [11, 23, 22, 33, 22]}
labels = ['a', 'b', 'c', 'd', 'e']
df = pd.DataFrame(pers__data , index=labels)
print("Persons whose height not known:")
print(df[df['height'].isnull()])
```

Write a Pandas program to select the name of persons whose height is between 5 to 5.5 (both values inclusive)
'name': ['Asha', 'Radha', 'Kamal', 'Divy', 'Anjali'],
'height': [5.5, 5, np.nan, 5.9, np.nan],
'age': [11, 23, 22, 33, 22]

```
import pandas as pd
import numpy as np
pers_data = {'name': ['Asha', 'Radha', 'Kamal', 'Divy',
    'Anjali'],
        'height': [ 5.5, 5, np.nan, 5.9, np.nan],
        'age': [11, 23, 22, 33, 22]}
labels = ['a', 'b', 'c', 'd', 'e']
df = pd.DataFrame(pers__data , index=labels)
print("Persons whose height is between 5 and 5.5")
print(df[(df['height']>= 5 )& (df['height']<= 5.5)])
```

Write a panda program to read marks detail of Manasvi and Calculate sum of all marks

```
import pandas as pd
import numpy as np
data = {'Manasvi': ['Physics', 'Chemistry', 'English',
'Maths', 'Computer Sc'],
    'marks': [ 89,99,97,99,98],}
df = pd.DataFrame(data )
print("Sum of Marks:")
print(df['marks'].sum())
```

Write a Pandas program to sort the data frame first by 'Designation' in Ascending order, then by 'Name' in Descending order.
import pandas as pd

```
data1 = {'Name':['Akshat', 'Sameer', 'Pihu', 'Neha'] ,
'Age':[28,34, 29,42], 'Designation':['Accountant' , 'Clerk',
'Clerk', 'Manager']}
df1 = pd.DataFrame(data1)
print (df1.sort_values(by=['Designation','Name'],
ascending=[True,False]))
```

Draw the histogram based on the Production of Wheatin different Years
Year:2000,2002,2004,2006,2008,2010,2012,2014,2016,2018
Production': 4,6,7,15,24,2,19,5,16,4
import pandas as pd
import matplotlib.pyplot as plt
data $=\{$ 'Year': [2000, 2002, 2004, 2006, 2008, 2010, 2012, 2014, 2016, 2018], \}
'Production': [4, 6, 7, 15, 24, 2, 19, 5, 16, 4]\}
d=pd.DataFrame(data)
print(d)
x=d.hist(column='Production', bins=5, grid=True)
plt.show(x)
Write a program to create dataframe for 3 student including name and roll numbers. and add new columns for 5 subjects and 1 column to calculate percentage. It should include random numbers in marks of all subjects
import pandas as pd, numpy as $n p$, random
$D=\{$ 'Roll': [1, 2, 3],'Name':['Sangeeta', 'Shanti','Swati']\}
$\mathrm{P}=[$]
$\mathrm{C}=[]$
$M=[]$
$\mathrm{E}=[]$
$\mathrm{H}=[$]
SD=pd.DataFrame(D)
for i in range(3):
P.append(random.randint $(1,101)$)
C.append(random.randint $(1,101)$)
M. append(random.randint $(1,101)$)
E.append(random.randint $(1,101)$)
H. append(random.randint $(1,101)$)

SD['Phy']=P
SD['Chem'] =C
SD['Maths']=M
SD['Eng']=E
SD['Hin']=H
SD['Total']=SD. Phy+SD. Chem+SD. Maths+SD. Eng+SD. Hin
SD['Per']=SD.Total/5
print(SD)

The table shows passenger car fuel rates in miles per gallon for several years. Make a LINE GRAPH of the data. During which 2-year period did the fuel rate decrease?

YEAR: 2000200220042006
RATE: $21.0 \quad 20.7 \quad 21.2 \quad 21.6$
import matplotlib.pyplot as \mathbf{p}
$\mathrm{Yr}=[2000,2002,2004,2006]$
rate=[21.0,20.7,21.2,21.6]
p.plot(Yr,rate)
p.show()

The number of bed-sheets manufactured by a factory during five consecutive weeks is given below.

Week	First	Second	Third	Fourth	Fifth
Number of Bed-sheets	600	850	700	300	900

Draw the bar graph representing the above data

```
import matplotlib.pyplot as p
x=['First','Second','Third','Fourth','Fifth'] # Assigning Data for X axis
y=[600,850,700,300,900] # Assingning Data for Y axis
p.title('Production By Factory')
p.xlabel('Week')
p.ylabel('No. of Bed Sheets')
p.bar(x,y,color='Blue',width=.50) # To draw bar graph, with each bar of . 50 width
p. show()
```

The number of students in 7 different classes is given below. Represent this data on
the bar graph.

Class	6th	7th	8th	9th	10th	11th	12th
Number of Students	130	120	135	130	150	80	75

import matplotlib.pyplot as p
$\mathrm{x}=[6,7,8,9,10,11,12] \quad$ \# Assigning Data for X axis
$\mathrm{Y}=[130,120,135,130,150,80,75]$ \# Assingning Data for Y axis
p.title('Class Strength')
p.xlabel('CLASS')
p.ylabel('NO. of Students')
p.bar(x,y,color='green', width=.40) \# To draw bar graph, with each bar of . 40 width
p.show()

The number of students in 7 different classes is given below. Represent this data on the bar graph.

Class	6th	7th	8th	9th	10th	11th	12th
Number of Students	130	$\mathbf{1 2 0}$	$\mathbf{1 3 5}$	$\mathbf{1 3 0}$	150	$\mathbf{8 0}$	75

```
import matplotlib.pyplot as p
x=[6,7,8,9,10,11,12] # Assigning Data for X axis
y=[130,120,135,130,150,80,75] # Assingning Data for Y axis
p.title('Class Strength')
p.xlabel('CLASS')
p.ylabel('No.of Students')
p.bar(x,y,color='green',width=.40) # To draw bar graph, with each bar of .40 width
p.show()
```

An analysis has been done in the school to identify hobby of Students as given below.

Hobby	Music	Dance	Games	Reading	Drawing
Number of Students	$\mathbf{1 3 0}$	$\mathbf{1 5 0}$	$\mathbf{1 8 0}$	$\mathbf{7 5}$	$\mathbf{1 6 0}$

Represent this data on the Pie Chart . Slice colour must be pink,green,blue,gold and light sky blue

```
import matplotib.pyplot as p
L=["Drawing","Music","Dance","Games","Reading"] # Defining labels
nos=[130,150,180,75,160] # Assingning Data for pie
c=["pink","green","blue","gold","lightskyblue"]
expld= (0.1,0,0,0,0)
p.figure ( figsize=[8,5)
p.title ( 'Hobbies Analysis')
p.pie ( nos,explode=expld,labels=L,colors=c,autopct='%.2f%%' ,shadow=True,startangle=170)
p.show ()
```

24 The Production(in Tone) by Factory in Years is shown below Represent this data on the scatter graph.

Year	2000	2005	2010	2015
Production in Tons	50	40	30	60

```
import matplotlib.pyplot as p
y=[50,40,30,60] # Assingning Data for Y axis
x=[2000,2005,2010,2015] # Assingning Data for x axis
p.title('Production By Factory')
p.grid(True)
p.ylabel('Production of Iron in Tons')
p.xlabel('Year')
p.scatter(x,y,color='b') # To draw SCATTER graph WITH BLUE DOTS
p.show()
Consider the Following set of Data
\(34,18,100,27,54,52,93,59,61,87,68,85,78,82,9\).Create a box plot and add title as
Horizontal Boxplot and y-axis title as "Value Range"
```

```
import matplotlib.pyplot as plt
```

import matplotlib.pyplot as plt
D=[34,18,100,27,54,52,93,59,61,87,68,85,78,82,9]
D=[34,18,100,27,54,52,93,59,61,87,68,85,78,82,9]
plt.boxplot(D,vert=False,showmeans=True)
plt.boxplot(D,vert=False,showmeans=True)
plt.title("Horizontal Boxplot")
plt.title("Horizontal Boxplot")
plt.xlabel("value Range")
plt.xlabel("value Range")
plt.show()

```
plt.show()
```

Consider the table given below and write the query for the following
Table: CLUB

GCode	GameName	Number	Fees	StartingDate
101	Carom	2	5000	$2004-01-23$
102	Badminton	2	12000	$2003-12-12$
103	Table	4	8000	$2004-02-14$
104	Chess	2	9000	$2004-01-01$
105	Lawn Tennis	4	25000	$2004-03-19$

1. To display the name of all games with their Gcodes.
2. To display details of those games which are having Fees more than 7000.
3. To display the content of the CLUB table in descending order of startDate.
4. To delete the record of all GameNames.
5. List the minimum and maximum fees from CLUB.

Consider the tables FLIGHTS \& FARES. Write SQL commands for the statements
Table : FLIGHTS

FNO	SOURCE	DEST	NO_OF_FL	NO_OF_STOP
IC301	MUMBAI	BANGALORE	3	2
IC799	BANGALORE	KOLKATA	8	3
MC101	DELHI	VARANASI	6	0
IC302	MUMBAI	KOCHI	1	4
AM812	LUCKNOW	DELHI	4	0
MU499	DELHI	CHENNAI	3	3

Table : FARES

FNO	AIRLINES	FARE	TAX_percentage
IC301	Indian Airlines	9425	5
IC799	Spice Jet	8846	10
MC101	Deccan Airlines	4210	7
IC302	Jet Airways	13894	5
AM812	Indian Airlines	4500	6
MU499	Sahara	12000	4

i) Display flight number \& number of flights from Mumbai from the table flights.
ii) Arrange the contents of the table flights in the descending order of destination. Increase the tax by 2% for the flights starting from Delhi.
iv) Display the flight number and fare to be paid for the flights from Mumbai to Kochi using the tables, Flights \& Fares, where the fare to be paid =fare+fare*tax/100.
v) Display total no of source stations(eliminate duplicate) present in the table.
vi) Display the fare for the flight for MUMBAI to BANGLORE
vii)Display the records of source stations started with letter 'B'.
viii) Display the flight no. for which fare to be paid is less than 3000.
ix) Display total no. of flights available for each Airlines
x) Add a new column Dep_Time in the table Flight.
xi) Delete the record of flight no. IC301 from the table FARE.xii) increase the size of the column 'source' to 30 in the Table FLIGHT

Table : Employee

Eid	Name	Deptid	Qualification	Sex
1	Deepali Gupta	101	MCA	F
2	Rajat Tyagi	101	BCA	M
3	Hari Mohan	102	B.A	M
4	Harry	102	M.A	M
5	Sumit Mittal	103	B.Tech	M
6	Jyoti	101	M.Tech	F

Table : Salary

Eid	Basic	DA	HRA	Bonus
1	6000	2000	2300	200
2	2000	300	300	30
3	1000	300	300	40
4	1500	390	490	30
5	8000	900	900	80
6	10000	300	490	89

(i) To display the frequency of employees department wise.
(ii) To list the names of those employees only whose name starts with ' H '
(iii) To add a new column in salary table . the column name is total_sal.
(iv) To store the corresponding values in the total_sal column.
29. Observe the following tables and write the queries on the basis the given tables :-

Table: hospital

	Name	Age	Department	Charges	Gender
1	Arprit	62	Surgery	300	M
2	Zarina	22	ENT	250	F
3	Kareem	32	Orthopaedic	200	M
4	Arun	12	Surgery	300	M
5	Zubin	30	ENT	250	M
6	Kettaki	16	ENT	250	F
7	Ankita	29	Cardiology	800	F
8	Zareen	45	Gynecology	300	F
9	Kush	19	Cardiology	800	M
10	Shilpa	23	Nuclear Medicine	400	F

Write MySql command for the following:
a) To displaye Total no. of employees present in the Hospital
b) To display all information about the patients of cardiology department.
c) To list the name of female patients who are in ENT department.

To display name and gender of all the patients whose age is in the range of 40 to 50 in ascending order of their name.
Consider the following tables SCHOOL and ADMIN. Write SQL commands for the statements (i) to (iv)).

SCHOOL

i) To display TEACHERNAME, PERIODS of all teachers whose periods less than 25.
ii) To display TEACHERNAME, CODE and DESIGNATION from tables SCHOOL and ADMIN whose gender is male.
iii) To display the number of teachers in each subject.
iv) To display CODE, TEACHERNAME and SUBJECT of all teachers who have joined the school after 01/01/1999.

30, Design a Django Based Application to obtain a search criteria and fetches record based on that from Books Table.
31. Design a Django based application that fetches all records from student table of School database.
32. Design a Django based application that fetches all records of those employees who are 'Salesman'

