
INFORMATICS PRACTICES 313

ANNEXURE-I
Binary Codes

It is important to know how data is processed inside a computer. For example, if we

press an alphabet key then how that alphabet goes inside the computer? Does the

computer understand the language which we speak or use? Certainly not. After all, a

computer is made up of various electronic components. The human language or

instructions have to be transformed into a form which can be processed by these

electronic components.

It is noted that any of the electronic components can possess two physical states. To

represent a two-state system, the binary system is the most suited one since it works on

only two digits 0 and 1 called bits (short notation of binary digits). When some data or

instruction is fed into a computer, each of its electronic components would have one of

the two states that it can have. As such the instruction gets converted into a combination

of bits (0's and 1's). Thus each alphabet, character or number gets converted into codes

containing bits.

We require lots and lots of unique combinations of bits in order to store each and every

possible character and number. For example, if we allow only 2 bits, then there are four

possible combinations, namely 00, 01, 10, 11. Thus using 2 bits, only four numbers or
3alphabets can be accommodated. Similarly, using 3 bits, there are 8 (=2) different

combinations. These combinations are not sufficient enough even to store 10 numbers (0-

9) for which we require at least 10 different combinations. To meet this requirement, we
4need at least 4-bit code which can accommodate 16(=2) numbers or characters. If we

write these 16 combinations in increasing order and use the first 10 for the numbers 0-9,

then the corresponding code is the well known BCD Code.

INFORMATICS PRACTICES

Annexure-I

314

BCD CODE

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

1000 8

1001 9

1010 -

1011 -

1100 -

1101 -

1110 -

1111 -

In a computer, we need to process not only numbers but also alphabets and many other

characters. To accommodate all these, a higher bit code is required. Among such codes,

the most popular is the ASCII code (American Standard Code for Information
7Interchange). It is a 7 bit code that can store 2 = 128 characters. For the ASCII table giving

the representation of these 128 combinations, one may refer to Annexure II.

In order to work with Hindi language also, another code ISCII (Indian Standard Code for

Information Interchange) was introduced. It is a 8-bit code and therefore gives

possibilities to store more characters than ASCII code. While introducing this code, care

was taken so that the common characters are represented by the same combination in

ASCII as well as ISCII. An additional 0 bit has been added on the left most position to

INFORMATICS PRACTICES 315

Annexure-I

make it 8-bit combination without changing the converted decimal value. The ISCII table

has been placed in Annexure III.

This idea of having a 8-bit code has been further extended to generate a 16-bit code which

has the possibilities to store characters of all major languages of the world. This makes

the computer multilingual. Such a code is termed as UNICODE. The first 128

combinations in UNICODE have been set same as those given by ASCII. One may refer

to Annexur IV where Unicode allocation has been given and also in this code, the

characters of Devanagari, Bengali, Gujarati and Tamil languages have been given.

Now you will learn how to convert a decimal number (integer or fraction) into binary

and vice versa.

In order to convert a decimal integer number into binary, the integer number is divided

by 2 and the remainder is recorded. The quotient is again divided by 2 and the remainder

is again recorded. This process goes on till the quotient becomes 0. At this stage the

remainders obtained at each step are written starting from the last one. The resulting

number is the desired binary number. Let us convert the decimal number 29 into binary:

Divide 29 by 2

The quotient is 14 and the remainder is 1

Divide the quotient 14 again by 2

The quotient is 7 and remainder is 0

The entire process is shown below

2 29 1

2 14 0

2 7 1 Remainders

2 3 1

2 1 1

0

The binary number 11101 is the binary equivalent of the decimal number 29.

Conversion of Decimal Integer to Binary

v

v

v

v

INFORMATICS PRACTICES

Annexure-I

316

Conversion of Decimal Fractions to Binary

v

v

v

v

v

Conversion from Binary to Decimal

Here the fraction is multiplied by 2 and the carry which is either 0 or 1 is recorded. In the

resulting number, the fraction is again multiplied by 2 and the carry is again recorded.

The process goes on till the fraction becomes 0. At this stage write all the carries obtained

from each step in the forward order. The number so obtained is the desired binary

fraction. Let us convert the decimal fraction .59375 into binary fraction. We do as follows:

.59375 × 2 = .1875 with a carry 1

.1875 × 2 = .375 with a carry 0

. 375 × 2 = . 75 with a carry 0

.75 × 2 = .5 with a carry 1

.5 × 2 = .00 with a carry 1

Thus the converted binary fraction is .10011. If a decimal number contains both, integral

part as well as fraction part then both these parts are converted into binary separately by

the procedures as described above. Then the two binary parts are written together

yielding the desired binary number. For example, the binary conversion of 29.59375 is

11101.10011.

We shall consider the combined case when a binary number has both integral as well as

fractional part. The conversion of such a number to decimal goes as follows. First

consider the integral part. Going from right to left, each binary digit is multiplied,
0 1 2 3respectively, by 2 , 2 , 2 , 2 , and so on. Then all the resulting numbers are added. As for

the fractional part, we go from left to right and multiply each binary digit, respectively,
-1 -2 -3by 2 , 2 , 2 , and so on. The resulting numbers are added. Putting together both the parts

gives the desired converted decimal number. Let us convert 11101.10011 into decimal.

The conversion is described below:

1 1 1 0 1 1 0 0 1 1

4 3 2 1 0 -1 -2 -3 -4 -52 2 2 2 2 2 2 2 2 2

4 3 2 1 02 × 1 + 2 × 1 + 2 × 1 + 2 × 0 + 2 × 1 = 16 + 8 + 4 + 1 = 29

-1 -2 -3 -4 -52 × 1 + 2 × 0 + 2 × 0 + 2 × 1 + 2 × 1 = ½ + 1/16 + 1/32 = .59375

INFORMATICS PRACTICES

Annexure-I

317

Hence the converted decimal number is 29.59375.

In Computer, representation of numbers plays an important role. Normally, a general

user is not aware of it. However what goes at the back end is quite technical. Let us try to

understand it. Consider number 35. It can be represented as 3.5 × 10 or 0.35 × 102 or even
-1 3350 × 10 . Similarly the binary equivalent 100011 of 35 can be represented as 100.011 × 2

4or 10.0011 × 2 etc. Since the decimal or binary point can change places, these

representations are called floating point representations. In general the floating point

representation of a number has the form

E ± m × 2

In this form m is called mantissa and E exponent. In order to maintain uniformity across

computers, certain standards have been fixed.

In modern computers, the length of data words can be 32 bits or 64 bits. In a 32 bits

word(0 - 31), the format of bits is as follows

0 1 - 7 8 - 31

Sign Exponent Mantissa

Also, in order to have unique representation for each number, the mantissa is to be set

between 1 and 2, i.e. 1<m<2. This form of the number is known as the normalized form.

Thus the normalized form of the 100011 is 1.00011 × 25 or

0 00000101 1.0011000000000…………..0

Sign

 E (8 bits) M(23 bits)

Further, the exponents could be negative as well. Now to remove negative sign from

exponent, number 127 is added in the actual exponent so as to make all exponents

positive. For example, consider the decimal number 2 which has the binary equivalent
110. The normalized form for 10 is 1.0 × 2 , i.e. the exponent has the value 1. But according

to the standard, the exponent actually stored would be 1+127 i.e. 128. Thus it will be

represented as

Floating Point Representation

INFORMATICS PRACTICES

Annexure-I

318

0 10000000 1.00000000000……………...0

Sign

 (8 bits) (23 bits)

We note that in the 8 bit exponent system, the range of exponents is from 00000001 to

11111110, i.e. the actual exponents from -126 to 127. Consequently, the smallest

normalized number is

0 00000001 1.000000………………0

-126 -38i.e. 1× 2 or 1.2× 2 approx. on the other hand, the largest number that can be stored is

0 11111110 1.1111111……………….1

127 23 127 38i.e. (1.1111……………1) × 2 , i.e. (2 - 2-)× 2 or 3.4 × 10 approx.

The above discussion was regarding 32-bit word arrangement which is generally termed

as single precision. The double precision case for the 64 bit word length can be discussed

similarly.

INFORMATICS PRACTICES 319

ANNEXURE-1I
AMERICAN STANDARD CODE FOR

INFORMATION INTERCHANGE (ASCII)

Decimal Octal Hex Binary Value

------- ----- --- ------ -----

 000 000 000 00000000 NUL (Null char.)

 001 001 001 00000001 SOH (Start of Header)

 002 002 002 00000010 STX (Start of Text)

 003 003 003 00000011 ETX (End of Text)

 004 004 004 00000100 EOT (End of Transmission)

 005 005 005 00000101 ENQ (Enquiry)

 006 006 006 00000110 ACK (Acknowledgment)

 007 007 007 00000111 BEL (Bell)

 008 010 008 00001000 BS (Backspace)

 009 011 009 00001001 HT (Horizontal Tab)

 010 012 00A 00001010 LF (Line Feed)

 011 013 00B 00001011 VT (Vertical Tab)

 012 014 00C 00001100 FF (Form Feed)

 013 015 00D 00001101 CR (Carriage Return)

 014 016 00E 00001110 SO (Shift Out)

 015 017 00F 00001111 SI (Shift In)

 016 020 010 00010000 DLE (Data Link Escape)

 017 021 011 00010001 DC1 (XON) (Device Control 1)

 018 022 012 00010010 DC2 (Device Control 2)

 019 023 013 00010011 DC3 (XOFF)(Device Control 3)

 020 024 014 00010100 DC4 (Device Control 4)

INFORMATICS PRACTICES

Annexure-II

320

 021 025 015 00010101 NAK (Negativ Acknowledgemnt)

 022 026 016 00010110 SYN (Synchronous Idle)

 023 027 017 00010111 ETB (End of Trans. Block)

 024 030 018 00011000 CAN (Cancel)

 025 031 019 00011001 EM (End of Medium)

 026 032 01A 00011010 SUB (Substitute)

 027 033 01B 00011011 ESC (Escape)

 028 034 01C 00011100 FS (File Separator)

 029 035 01D 00011101 GS (Group Separator)

 030 036 01E 00011110 RS (Reqst to Send)

 (Rec. Sep.)

 031 037 01F 00011111 US (Unit Separator)

 032 040 020 00100000 SP (Space)

 033 041 021 00100001 ! (exclamation mark)

 034 042 022 00100010 " (double quote)

 035 043 023 00100011 # (number sign)

 036 044 024 00100100 $ (dollar sign)

 037 045 025 00100101 % (percent)

 038 046 026 00100110 & (ampersand)

 039 047 027 00100111 ' (single quote)

 040 050 028 00101000 ((left/open parenthesis)

 041 051 029 00101001) (right/closing

 parenth.)

 042 052 02A 00101010 * (asterisk)

 043 053 02B 00101011 + (plus)

 044 054 02C 00101100 , (comma)

 045 055 02D 00101101 - (minus or dash)

 046 056 02E 00101110 . (dot)

 047 057 02F 00101111 / (forward slash)

 048 060 030 00110000 0

INFORMATICS PRACTICES

Annexure-II

321

 049 061 031 00110001 1

 050 062 032 00110010 2

 051 063 033 00110011 3

 052 064 034 00110100 4

 053 065 035 00110101 5

 054 066 036 00110110 6

 055 067 037 00110111 7

 056 070 038 00111000 8

 057 071 039 00111001 9

 058 072 03A 00111010 : (colon)

 059 073 03B 00111011 ; (semi-colon)

 060 074 03C 00111100 < (less than)

 061 075 03D 00111101 = (equal sign)

 062 076 03E 00111110 > (greater than)

 063 077 03F 00111111 ? (question mark)

 064 100 040 01000000 @ (AT symbol)

 065 101 041 01000001 A

 066 102 042 01000010 B

 067 103 043 01000011 C

 068 104 044 01000100 D

 069 105 045 01000101 E

 070 106 046 01000110 F

 071 107 047 01000111 G

 072 110 048 01001000 H

 073 111 049 01001001 I

 074 112 04A 01001010 J

 075 113 04B 01001011 K

 076 114 04C 01001100 L

 077 115 04D 01001101 M

 078 116 04E 01001110 N

INFORMATICS PRACTICES

Annexure-II

322

 079 117 04F 01001111 O

 080 120 050 01010000 P

 081 121 051 01010001 Q

 082 122 052 01010010 R

 083 123 053 01010011 S

 084 124 054 01010100 T

 085 125 055 01010101 U

 086 126 056 01010110 V

 087 127 057 01010111 W

 088 130 058 01011000 X

 089 131 059 01011001 Y

 090 132 05A 01011010 Z

 091 133 05B 01011011 [(left/opening

bracket)

 092 134 05C 01011100 \ (back slash)

 093 135 05D 01011101] (right/closing

bracket)

 094 136 05E 01011110 ̂ (caret/circumflex)

 095 137 05F 01011111 _ (underscore)

 096 140 060 01100000 ̀

 097 141 061 01100001 a

 098 142 062 01100010 b

 099 143 063 01100011 c

 100 144 064 01100100 d

 101 145 065 01100101 e

 102 146 066 01100110 f

 103 147 067 01100111 g

 104 150 068 01101000 h

 105 151 069 01101001 i

 106 152 06A 01101010 j

INFORMATICS PRACTICES

Annexure-I

323

 107 153 06B 01101011 k

 108 154 06C 01101100 l

 109 155 06D 01101101 m

 110 156 06E 01101110 n

 111 157 06F 01101111 o

 112 160 070 01110000 p

 113 161 071 01110001 q

 114 162 072 01110010 r

 115 163 073 01110011 s

 116 164 074 01110100 t

 117 165 075 01110101 u

 118 166 076 01110110 v

 119 167 077 01110111 w

 120 170 078 01111000 x

 121 171 079 01111001 y

 122 172 07A 01111010 z

 123 173 07B 01111011 { (left/opening brace)

 124 174 07C 01111100 | (vertical bar)

 125 175 07D 01111101 } (right/closing brace)

 126 176 07E 01111110 ~ (tilde)

 127 177 07F 01111111 DEL (delete)

Reference : http://www.neurophys.wisc.edu/comp/docs/ascii/

INFORMATICS PRACTICES 324

ANNEXURE-1II
INDIAN STANDARD CODE FOR INFORMATION

INTERCHANGE (ISCII)

Reference : http://www.tdil.mit.gov.in/standards.htm

INFORMATICS PRACTICES 325

ANNEXURE-1V

Unicode Allocation

UNICODE

INFORMATICS PRACTICES

Annexure-IV

326

Devnagri

INFORMATICS PRACTICES

Annexure-I

327

Bengali

INFORMATICS PRACTICES

Annexure-IV

328

Gujarati

INFORMATICS PRACTICES

Annexure-IV

329

Tamil

Reference : The Unicode Standard, Version 3.0, The Unicode Consortium,
Addison-Wesley, An Imprint of Addison Wesley Longman, Inc., 2000.

INFORMATICS PRACTICES 330

ANNEXURE-V
Installation of Netbeans IDE

Download Netbeans Installer File from the Internet

To install the NetBeans Integrated Development Environment (IDE), first it must be

downloaded from the NetBeans web page. It can also be downloaded in a bundle with

the Java 2 Standard Edition (J2SE) or Java 2 Enterprise Edition (J2EE).

! You should have already installed the Java Development Kit (JDK) before

installing Netbeans. If you have not done so, then install JDK first before starting

the Netbeans installation . The JDK consists of the Java compiler and related tools

which enable users to create applications in Java.

To download Netbeans Installer files, follow the steps enumerated below:

STEP 1: Browse to the Netbeans web page - http://netbeans.org/

STEP 2: Choose to download the latest version of the IDE

Browse to
Netbeans Page

Click to
download
latest version

INFORMATICS PRACTICES

Annexure-V

331

STEP 3: Choose the appropriate bundle to be downloaded

Once you click on the Download button for the appropriate bundle, the following screen

appears and then the download starts automatically.

Choose the

appropriate

bundle

Click here if the

download does

not start

automatically

INFORMATICS PRACTICES

Annexure-V

332

Installing Netbeans Using The Installer File

After downloading Netbeans Installer files, follow the steps enumerated below to install

the IDE on your system:

STEP 1: Start the Installer Program

Use a file explorer to navigate to the file that you just downloaded. Double click on the

file name to start the installation process and then follow the instructions as given in the

dialog boxes (shown in the following figures).

Double click to

start the

installation

Click Next as

soon as the

Installer is

configured

Double Clicking on

the installer file

starts with the

Configuration process

INFORMATICS PRACTICES

Annexure-V

333

STEP 2: Customize the Netbeans Installer

If you have already installed Java, then choose the customize button to select which Java

version to use else simply click the Next button. In the next dialog box select the accept

terms and conditions check box and click on Next button.

Choose if Java

has already

been installed Choose to install

all the components

from the bundle

INFORMATICS PRACTICES

Annexure-V

334

STEP 3: Choose the Installation Folder for all components to be installed (one by one) and

also the appropriate JDK version.

In the subsequent dialog boxes choose the appropriate destination folder for the other

components of the bundle.

INFORMATICS PRACTICES

Annexure-V

335

STEP 4: Start the Installation of Netbeans and the related components by clicking on the

Install button. Continue with the dialog boxes until you have completed installing

NetBeans on your PC.

INFORMATICS PRACTICES

Annexure-V

336

The progress window keeps you informed about the installation status.

INFORMATICS PRACTICES

Annexure-V

337

Click on the Finish button as soon as the Installation process is completed and the

following dialog box is shown.

Starting Netbeans

If you use the default location for the install on Windows, NetBeans will be installed in

the directory C:\Program Files\NetBeans6.5. An icon to start NetBeans will be installed

on your desktop. On Windows start NetBeans with a double mouse click on this icon or

use the Start button to navigate to the program name.

INFORMATICS PRACTICES

Annexure-V

338

The opening screen of the Netbeans IDE is as shown in the following Figure.

