Python language: Control Flow

The FOSSEE Group
Department of Aerospace Engineering
IIT Bombay

Mumbai, India

Outline

(9) Control flow

- Basic Conditional flow
(2) Control flow
- Basic Looping
(3) Exercises

Outline

(1) Control flow

- Basic Conditional flow

Control flow
 - Basic Looping

Exercises

Control flow constructs

- if/elif/else: branching
- while: looping
- for: iterating
- break, continue: modify loop
- pass : syntactic filler

Outline

Control flow
 - Basic Conditional flow

Control flow
 - Basic Looping

Exercises

if...elif...else example

Type the following code in an editor \& save as ladder.py

```
x = int(input("Enter an integer: "))
```

if $x<0$:
print('Be positive!')
elif $x==0$:
print('Zero')
elif $x==1$:
print('Single')
else:
print('More')
- Run in IPython: \%run ladder.py
- Run on terminal: python ladder. oy

if...elif...else example

Type the following code in an editor \& save as ladder.py
x = int (input("Enter an integer: "))
if $x<0$:
print('Be positive!')
elif $x==0$:
print('Zero')
elif $x==1$:
print('Single')
else:
print('More')

- Run in IPython: \%run ladder.py
- Run on terminal: python ladder.py

Ternary operator

- score_str is either ' $A A^{\prime}$ ' or a string of one of the numbers in the range 0 to 100.
- We wish to convert the string to a number using int
- Convert it to 0 , when it is ' $A A^{\prime}$
- if-else construct or the ternary operator

In []: if score_str != 'AA':
.....: score $=$ int(score_str)
.....: else:
.....: score $=0$

Ternary operator

With the ternary operator you can do this:
In []: ss = score_str
In []: score = int(ss) if ss != 'AA' else 0

Outline

Control flow
 - Basic Conditional flow

(2) Control flow

- Basic Looping

Exercises

Outline

Control flow
 - Basic Conditional flow

Exercises

while: motivational problem

Example: Fibonacci series

Sum of previous two elements defines the next:

$$
0,1,1,2,3,5,8,13,21, \ldots
$$

How do you solve this?

- Task: Give computer, instructions to solve this
- How would you solve it?
- How would you tell someone to solve it?
- Assume you are given the starting values, 0 and 1 .

while: Fibonacci

Example: Fibonacci series

Sum of previous two elements defines the next:

$$
0,1,1,2,3,5,8,13,21, \ldots
$$

(1) Start with: $\mathrm{a}, \mathrm{b}=0,1$
(2) Next element: next $=\mathrm{a}+\mathrm{b}$
(3) Shift a, b to next values

- $a=b$
- $b=$ next
(1) Repeat steps 2, 3 when $\mathrm{b}<30$

while: Fibonacci

Example: Fibonacci series

Sum of previous two elements defines the next:

$$
0,1,1,2,3,5,8,13,21, \ldots
$$

(1) Start with: $\mathrm{a}, \mathrm{b}=0,1$
(2) Next element: next $=\mathrm{a}+\mathrm{b}$ Shift a, b to next values

- $\mathrm{a}=\mathrm{b}$
- $\mathrm{b}=$ next
(9) Repeat steps 2, 3 when $\mathrm{b}<30$

while: Fibonacci

Example: Fibonacci series

Sum of previous two elements defines the next:

$$
0,1,1,2,3,5,8,13,21, \ldots
$$

(1) Start with: $\mathrm{a}, \mathrm{b}=0,1$
(3) Next element: next $=\mathrm{a}+\mathrm{b}$
(3) Shift a, b to next values

$$
\begin{aligned}
& \mathrm{a}=\mathrm{b} \\
& \mathrm{~b}=\text { next }
\end{aligned}
$$

(4) Repeat steps 2,3 when b < 30

while: Fibonacci

Example: Fibonacci series

Sum of previous two elements defines the next:

$$
0,1,1,2,3,5,8,13,21, \ldots
$$

(1) Start with: $\mathrm{a}, \mathrm{b}=0,1$
(2) Next element: next $=\mathrm{a}+\mathrm{b}$
(3) Shift a, b to next values

- $\mathrm{a}=\mathrm{b}$
- b = next
(9) Repeat steps 2, 3 when $\mathrm{b}<30$

while: Fibonacci

Example: Fibonacci series

Sum of previous two elements defines the next:

$$
0,1,1,2,3,5,8,13,21, \ldots
$$

(1) Start with: $\mathrm{a}, \mathrm{b}=0,1$
(2) Next element: next $=\mathrm{a}+\mathrm{b}$
(3) Shift a, b to next values

$$
\begin{aligned}
& \text { - } \mathrm{a}=\mathrm{b} \\
& 0 \mathrm{~b}=\text { next }
\end{aligned}
$$

(4) Repeat steps 2,3 when $b<30$

while

In []: $\mathrm{a}, \mathrm{b}=0,1$
In []: while b < 30:

$$
\begin{array}{ll}
\ldots: & \text { print }(b, \text { end= } \\
\ldots: & \text { next }=a+b \\
\ldots: & a=b \\
\ldots: & b=\text { next }
\end{array}
$$

. . . :
. . . :

- Do this manually to check logic
- Note: Indentation determines scope

while

We can eliminate the temporary next:
In []: $\mathrm{a}, \mathrm{b}=0,1$
In []: while b < 30:

. . . :
$\begin{array}{llllllll}1 & 1 & 2 & 3 & 5 & 8 & 13 & 21\end{array}$
Simple!

for ...range ()

Example: print squares of first 5 numbers
In []: for i in range(5): print (i, i * i)

00
11
24
39
416

range ()

range ([start,] stop[, step])

- range () returns a sequence of integers
- The start and the step arguments are optional
- stop is not included in the sequence

Documentation convention

- Anything within [] is optional
- Nothing to do with Python

for . . . range ()

Example: print squares of odd numbers from 3 to 9
In []: for i in range (3, 10, 2): print(i, i * i)

39
525
749
981

Exercise with for

Convert the Fibonnaci sequence example to use a for loop with range.

Solution

$\mathrm{a}, \mathrm{b}=0,1$
for i in range(10): print (b, end=' ') $a, b=b, a+b$

Note that the while loop is a more natural fit here

break, continue, and pass

- Use break to break out of loop
- Use continue to skip an iteration
- Use pass as syntactic filler

break example

Find first number in Fibonnaci sequence < 100 divisible by 4 :

$$
\begin{aligned}
& a, b=0,1 \\
& \text { while } b<500: \\
& \text { if } b \% 4=0: \\
& \text { print }(b) \\
& \quad b r e a k \\
& a, b=b, a+b
\end{aligned}
$$

continue

- Skips execution of rest of the loop on current iteration
- Jumps to the end of this iteration
- Squares of all odd numbers below 10 , not multiples of 3

```
In []: for n in range(1, 10, 2):
.....: if n%3 == 0:
        continue
    print(n*n)
```


pass example

Try this:

for in in range(5):
if i \% $2==0$:
pass
else:
print(i, 'is Odd')

- pass: does nothing
- Keep Python syntactically happy

Another example: while True:
pass

Outline

Control flow
 - Basic Conditional flow
 Control flow
 - Basic Looping

(3) Exercises

Problem 1.1: Armstrong numbers

Write a program that displays all three digit numbers that are equal to the sum of the cubes of their digits.
That is, print numbers $a b c$ that have the property
$a b c=a^{3}+b^{3}+c^{3}$
For example, $153=1^{3}+5^{3}+3^{3}$

Hints

- Break problem into easier pieces
- How would you solve the problem?
- Can you explain to someone else how to solve it?

Some hints

- What are the possible three digit numbers?
- Can you split 153 into its respective digits, $a=1, b=5, c=3$?
- With a, b, c can you test if it is an Armstrong number?

Solution: part 1

```
x = 153
a = x//100
b}=(x%100)//1
c = x%10
```

$(a * * 3+b * * 3+c * * 3)==x$

Solution: part 2

$\mathbf{x}=100$
while x < 1000:
print (x)
$\mathbf{x}+=1 \quad \# \mathrm{x}=\mathrm{x}+1$

Solution

$\mathbf{x}=100$
while x < 1000:
$a=x / / 100$
$b=(x \% 100) / / 10$
c $=\mathbf{x} \% 10$
if $(a * * 3+b * * 3+c * * 3)==x$: print (x)
$\mathbf{x}+=1$

Problem 1.2: Collatz sequence

(1) Start with an arbitrary (positive) integer.
(2) If the number is even, divide by 2 ; if the number is odd, multiply by 3 and add 1.
(3) Repeat the procedure with the new number.
(4) It appears that for all starting values there is a cycle of 4, 2, 1 at which the procedure loops.
Write a program that accepts the starting value and prints out the Collatz sequence.

What did we learn?

- Conditionals: if elif else
- Looping: while \& for
- range
- break, continue, pass
- Solving simple problems

