
KAPIL SEHGAL

Data structure

For

Class – XII

PYTHON FOR COMPUETR SCIENCE

KAPIL SEHGAL (P.G.T. (CS) K.V. NO2 Delhi Cantt,

KAPIL SEHGAL

Data can be in the form of raw data, data items and data structure.

Raw Data – Raw data are the facts or they are simply values or set of

values

Data Item – Data items represents single unit of values of certain types.

Data Structure – A Data Structure is a named group of data of different

data types which can be processed as a single unit. A data structure has

well-defined operation behavior and properties. Record and Array is the

example of the data structure.

Elementary Data Representation

KAPIL SEHGAL

Different Data Structures

Data Structure is very important in Computer System. As these not only allow

the user to combine various data types in a group but also allow processing of

the group as a single unit. Data structure be in two types.

Simple Data Structure

 These data structure are normally built from primitive data types like integer,

real char, Boolean etc These are

for ex.

 LIST

 TUPLE

KAPIL SEHGAL

Data Structure - Architecture

KAPIL SEHGAL

Stack

Stack is a Linear Data Structure, in which elements are processed in the LAST IN FIRST

OUT (LIFO) fashion.

In other words Stack is a linear list in which elements are add and removed at single end.

The process of add element into stack is called PUSH.

The process of delete element from stack is called POP

The Recently added and that element

which will remove first is called TOP

element

KAPIL SEHGAL

Stack

A stack is an abstract data type ADT, commonly used in most programming

languages. It is named stack as it behaves like a real-world stack, for example −

deck of cards or pile of plates etc

A real-world stack allows operations at one end only. For example, we can place

or remove a card or plate from top of the stack only. Likewise, Stack ADT allows

all data operations at one end only. At any given time, We can only access the top

element of a stack.

KAPIL SEHGAL

Stack

This feature makes it LIFO data structure. LIFO stands for Last-in-first-out.

Here, the element which is placed inserted or added last, is accessed first. In

stack terminology, insertion operation is called PUSH operation and removal

operation is called POP operation.

Stack Representation

KAPIL SEHGAL

Stack operations

Stack operations may involve initializing the stack, using it and then de-initializing it.

Apart from these basic stuffs, a stack is used for the following two primary operations −

Stack Basic Operations

(a) Push : Storing an element at top of stack.

(b) Pop : Removing an element from stack.

(c) Peak: Get the top element of stack without removing it.

(d) isFull: Check if stack is full or not.

(e) isEmpty: Check if stack is empty or not.

KAPIL SEHGAL

Peak operation
Peak operation returns the peak (top) element of the stack i.e. This operation return that

element which is added latest.

Stack peak() Operations

def peak(stack):

 return stack[top]

Here top will be global variable

KAPIL SEHGAL

Isfull() operation
isFull() operation returns the True if the stack is full and return False if stack is not Full

When stack is full : When top reaches at Maxsize

Stack isfull() Operations

Here top and maxsize will be global

variable

def isFull(stack):

 if (top==maxsize-1):

 return True

 else:

 return False

KAPIL SEHGAL

Isempty() operation

Stack isEmpty() Operations

Here top and maxsize will be global

variable

isEmpty() operation returns the True if the stack is Empty (i.e. No element left in stack)

and return False if stack is not Empty (i.e. at least one element remain in stack)

When Stack is Empty : When Top will be at 0.

def isEmpty(stack):

 if (top==-1):

 return True

 else:

 return False

KAPIL SEHGAL

Overflow and underflow

After full of stack, we inserted

an element (i.e. applied push

operation) at the top of stack

then “Overflow” occurred

When Stack is Empty, we

tried to remove element (i.e.

applied pop operation) from

the stack then “Underflow”

occurred

OVERFLOW UNDERFLOW

def Traverse(stack):

 if (isEmpty(stack)):

 print("Stack is Empty ")

 else:

 for i in stack:

 print(i,end=" ")

Traverse Function

KAPIL SEHGAL

pUSH() operation
The process of putting a new data element onto stack is known as PUSH Operation. Push

operation involves series of steps −

(a) Step - 1 : Check if Stack is full

(b) Step - 2 : If Stack is full produce error and exit.

(c) Step – 3 : If Stack is not full, increment the top to the point next empty space

(d) Step – 4 : Add data element to the stack location, where top is pointing

(e) Step – 5 : Return Success

KAPIL SEHGAL

pUSH() algorithm

def Push(stack):

 global top

 if (isFull(stack)):

 print("\n Stack is OverFlow \n ")

 else:

 n=int(input("Enter An Element to Push "))

 top=top+1

 stack.append(n)

PUSH Function

KAPIL SEHGAL

pOP() operation
Accessing the content while removing it from stack, is known as pop operation.Pop

operation involves series of steps −

(a) Step - 1 : Check if Stack is empty

(b) Step - 2 : If Stack is empty produce error and exit.

(c) Step – 3 : If Stack is not empty, access the element from top of the stack

(d) Step – 4 : Remove top element from memory

(e) Step – 5 : Decrease the value of top by 1 and return success

KAPIL SEHGAL

pop() algorithm

POP Function

def Pop(stack):

 global top

 if (isEmpty(stack)):

 print("\n Stack is UnderFlow \n")

 else:

 n=stack[top]

 print("Removed Element ",n)

 top=top-1

 stack.pop()

KAPIL SEHGAL

Entire stack program with main
global maxsize

global top

top=-1

**************** Main Program **************

stack=[]

cont=0

while True:

 while True:

 print("1. Stack Push Operation ")

 print("2. Stack Pop Operation ")

 print("3. Show Peak / Top Position ")

 print("4. Traverse / Show Stack ")

 print("5. Exit ")

 ch=int(input("Enter Choice "))

 if (ch >= 1 and ch<=5):

 break

 if (ch == 1):

 Push(stack)

 if (ch == 2):

 Pop(stack)

 if (ch == 3):

 print("\n Peak Position ",Peak()+1, " \n ")

 if (ch == 4):

 Traverse(stack)

 if (ch == 5):

 cont=1

 if (cont == 1):

 break

KAPIL SEHGAL

Application of stack
Infix, Postfix and Prefix notations

Infix Notations

Where operator is

placed between

two operands. Ex.

 A+B

Here A and B are

operand and + is

operator

Infix, Postfix and Prefix notations are three different but equivalent ways of writing expressions. It is

easiest to demonstrate the differences by looking at examples of operators that take two

operands. Infix notation: X + Y. Operators are written in-between their operands. This is the usual way we

write expressions

Where operator is

placed after two

operands. Ex.

 AB+

Here A and B are

operand and + is

operator

Where operator is

placed between

two operands. Ex.

 + AB

Here A and B are

operand and + is

operator

Postfix Notations Prefix Notations

KAPIL SEHGAL

Infix, Postfix and Prefix notations
Simple Example

Bracket Example

More Example

A + B * C

A + BC*

ABC*+

(A + B) * C

AB+ * C

AB+C*

Infix to Postfix Infix to Prefix

A + B * C

A + *BC

+ A *BC

(A + B) * C

+AB * C

*+ABC

(A + B) * (C+D)

AB+ * (C+D)

AB+ * CD+

AB+CD+*

(A + B) * (C+D)

+AB * (C+D)

+AB * +CD

*+AB+CD

KAPIL SEHGAL

Algorithm : Conversion from infix to postfix

Algorithm to convert Infix To Postfix

Let, X is an arithmetic expression written in infix notation. This algorithm finds the equivalent postfix expression Y.

Push “(“onto Stack, and add “)” to the end of X.

Scan X from left to right and repeat Step 3 to 6 for each element of X until the Stack is empty.

If an operand is encountered, add it to Y.

If a left parenthesis is encountered, push it onto Stack.

If an operator is encountered ,then:

Repeatedly pop from Stack and add to Y each operator (on the top of Stack) which has the same precedence as

or higher precedence than operator.

Add operator to Stack.

[End of If]

If a right parenthesis is encountered ,then:

Repeatedly pop from Stack and add to Y each operator (on the top of Stack) until a left parenthesis is

encountered.

Remove the left Parenthesis.

[End of If]

[End of If]

END.

KAPIL SEHGAL

Conversion from infix to postfix example

Infix Expression : A * (B+C) * D

KAPIL SEHGAL

Conversion from infix to postfix example

Infix Expression : (A+B)* (C+D)

KAPIL SEHGAL

Algorithm : Conversion from infix to PREFIX
Algorithm to convert Infix To Prefix

 ********* Reverse Infix Expression **************

Let, X is an arithmetic expression written in infix notation. This algorithm finds the equivalent postfix expression Y.

Push “(“onto Stack, and add “)” to the end of X.

Scan X from left to right and repeat Step 3 to 6 for each element of X until the Stack is empty.

If an operand is encountered, add it to Y.

If a left parenthesis is encountered, push it onto Stack.

If an operator is encountered ,then:

Repeatedly pop from Stack and add to Y each operator (on the top of Stack) which has the same precedence as

or higher precedence than operator.

Add operator to Stack.

[End of If]

If a right parenthesis is encountered ,then:

Repeatedly pop from Stack and add to Y each operator (on the top of Stack) until a left parenthesis is

encountered.

Remove the left Parenthesis.

[End of If]

[End of If]

 **** Reverse Postfix Expression ******

END.

KAPIL SEHGAL

Conversion from infix to pREfix example
Infix Expression : A * (B – C) ^ E / F + G

Reverse Infix Expression and right parenthesis: G + F / E ^ (C – B) * A)

Again reverse this expression : (Prefix Expression) + * A / ^ - BCEFG

KAPIL SEHGAL

algorithm : Conversion from postfix to infix

Algorithm:

Iterate the given expression from left to

right, one character at a time

If a character is operand, push it to stack.

If a character is an operator,

pop operand from the stack, say it’s s1.

pop operand from the stack, say it’s s2.

perform (s2 operator s1) and push it to

stack.

Once the expression iteration is completed,

initialize the result string and pop out from

the stack and add it to the result.

Return the result.

Postfix Expression : ABC*+

Postfix Expression : AB+C*

KAPIL SEHGAL

Conversion from postfix to infix
Postfix Expression : AB+CD+*

KAPIL SEHGAL

EVALUATION OF POSTFIX EXPRESSION

5,20,10,+,*,3,/

6,9,+,3,/

2,5,3,-,+

KAPIL SEHGAL

EVALUATION OF POSTFIX EXPRESSION
Postfix Expression : 2,5,+,8,4,+,*

KAPIL SEHGAL

EVALUATION OF POSTFIX EXPRESSION : boolean value
Postfix Expression : True, False, NOT, AND, True, True, AND,

