
JAVA GUI Programming

Informatics Practices
Class XII

Chapter 4:

By- Rajesh Kumar Mishra
PGT (Comp.Sc.)

KV No.1, AFS, Suratgarh
e-mail : rkmalld@gmail.com

Revision Tour -II

Introduction

 A GUI (Graphical User Interface) is an interface that
uses pictures and other graphical components along
with text to interact with user in a familiar way.

 In JAVA, the GUI programming is done through
Swing API (Application Programming Interface)
enables look-and feel (L & F) environment.

 Swing controls are shipped with JAVA SE platform to
build a GUI applications. It is part of Java Foundation
Classes (JFC).

Types of Swing Controls

 Component:
A Swing component is a self-contained graphic
entity that can be customized and inserted into
applications. Ex. jLabel, jTextField, jButton etc.

 Container
A container is special type of component that
can hold other components. Ex. JFrame, jPanel,
jDialog etc.

Container controls are also divided into-
1. Top Level Container: which can be placed on

the Desktop. Ex. jFrame
2. Non-Top Level Containers: These can be

displayed within the context of another top-
level containers. Ex. jPanel

Various Swing Controls

jInternalFrame, jLyeredPane,
RootPane

Contains some
predefined specific
role.

Special Purpose
Containers

jPanel, jScrollPane, jSplitPane,
jTabbedPane, jToolbar

Contains general
purpose utility.

General Purpose
Containers

jApplet, jDialog, jFrameContains other
controls on the
Desktop

Top-Level Containers

jLabel, jProgressBar, jSeparator,
jToolTip

Display information to
user which can’t be
edit

Un-editable
Information Display

jColorChooser, jEditorPane,
jTextPane, jFileChooser, jTable,
jTextArea, jTree

Displays the
information in
formatted way

Interactive Display

jButton, jCheckBox,jComboBox
jList,jMenu,jRadioButton,
jSlider,jSpinner,
jTextField,jPasswordField

Simple components
used to get input from
the user

Basic Controls

Layout Managers

Layout managers enable you to control the way
in which visual components are arranged in GUI
forms by determining the size and position of
components within containers.

There are seven types of layout are available–
Flow Layout
Grid Layout
Card Layout
Spring Layout
Border Layout
GridBag Layout
Box Layout

1. Flow Layout

 It arranges components in a container like words
on a page. It fills the top line from left to right
and then top to bottom.

Features:
Components are given their preferred size.
Components are arranged in order as they are

attached i.e. first components appears at top left.
If container is not wide enough to display all the

components, it is wrapped around the line.
Vertical and horizontal gap between components

can be controlled.
Components can be left, center or right aligned.

2. Border Layout

 It arranges all the components along the edges
or the middle of the container i.e. top, bottom,
right and left edges of the area.

Features:
Components added to the top or bottom gets its

preferred height, but its width will be the width of
container.
Components added to the left or right gets its

preferred width, but its height will be the
remaining height of container.
Components added to the center gets neither its

preferred height or width. It covers the remaining
area of the container.

3. Grid Layout

It arranges all the components in a grid of
equally sized cells, adding them from the left
to right and top to bottom.

Features:
Only one component can be placed in a cell.
Each region of the grid will have the same size.

When container is resized, all cells are
automatically resized.
Order of placing components in cell is

determined as they were attached.
No components are their preferred height or

width i.e. all are assumed as same size.

4. GridBag Layout

It is powerful layout which arranges all the
components in a grid of cells and
maintains the aspect ration of the object
whenever container is resized. In this
layout cells may be different in size.

Features:
It assigns consistent horizontal and
vertical gap among components.
It allows you to specify a default
alignment for components within
columns or rows.

5. Box Layout

 It arranges multiple components in either vertically
or horizontally, but not both. Components are
arranged from left to right or top to bottom.

 Features:
Components are displayed either horizontally or

vertically.
It do not wrap components like Flow layout.
If the components are aligned horizontally, the

height of all components will be same, and equal
to the largest sized components.
If the components are aligned vertically, the

width of all components will be same, and equal
to the largest width components.

6. Card Layout

 It arranges two or more components having the
same size. Components are arranged in a deck,
where all cards of the same size and only top
card is visible at any time.

Features:
It treats each components as a card. Only one

card (top) is visible.
First component added in the container will be

kept at the top of the deck.
The default gap at the left, right and top,

bottom edged is zero. which are to be
arranged The card Components are displayed
either horizontally or vertically.

7. Spring Layout

 It is rarely used layout in which it arranges components they
may have fixed spaces. NetBeans IDE 6.5.1 does not
support this layout.

 Instead of Spring layout two other layouts are provided in
NetBeans 6.5 version.

Absolute Layout:
It places the components where they are placed.
Null layout:

It is used to design a form without any layout
manager at all.

By default, NetBeans uses Group Layout
also called Free Design. In which a
container groups item as a single entity.
Ex. Java pannel

How to use Layout Manager
There two ways, as you can use layout manager-
 From GUI Builder-

 Right click on Frame/panel.
 Choose desired layout from sub menu of Set Layout of the

context menu.
 The IDE applies the selected layout.

 From Inspector Window
 Right click on container name in Inspector Window.
 Choose desired layout from sub menu of Set Layout of the

context menu.
 The IDE applies the selected layout.

Controlling/Setting Layout Manager:
After adding Lay out manager, you may customize the setting of

the layout manager.
To set up the properties, click on Layout Node in

Inspector Window and get Lay out Properties box.
Set various properties to change the existing setting.

Events Handling in a GUI Application

An event is occurrence of some activities either initiated by user or
by the system. In order to react, you need to implement some
Event handling system in your Application. Three things are
important in Even Handling-

 Event Source:
It is the GUI component that generates the event, e.g. Button.

 Event Handler or Event Listener:
It is implemented as in the form of code. It receives and handles
events through Listener Interface.

 Event Object or Message:
It is created when event occurs. It contains all the information
about the event which includes Source of event and type of
event etc.

Event
occurrence

Event
Source

Event
Listener

Event object /
Message

Reaction

How to use Event Handlers in NetBeans

There two ways, as you can define events in NetBeans-
Using Property Sheet-

 Select the component in the Inspector Window or in Design
View by clicking on it.

 Click on Event buttons in Properties Window.
 Click the value of desired Event in the list, where <none> is

displayed.
 Now add event handler code (//TODO code//) by clicking on

the left column of property window. It will open Code
Window, where you can type commands/code.

Using Contextual Menu-
 Right Click on desired control of the Form in Design view.
 Choose desired Event from the Context Menu and its Sub

Menu.
 When you click on desired Event it opens source Code editor

with default Handeler Name, where you can type //TODO
code for the Handler.

How to use Event Handlers in NetBeans….

As you attached an Event along with Listener, you
will found a code window along with prototyped
method to perform actions defined by you. You
may write commands to be executed in //TODO
section.

Control
Name

Listener
Name

Event
Name

Commands to
be executed

Working with Container Control-- jFrame

 Every Swing Application must have at least one Top Level container (jFrame,
jApplet, jDialog). A Top Level Container may have Mid-Level Container like
Content Pane (jPanel, jMenuBar, jScrollBar etc.) or Components (jButton,
jTextField etc.)

 A Frame (jFrame) is a Top Level (Desktop) container control having Title Border
and other Properties.

Defines the action when close
button is pressed.

DO_NOTHING, HIDE, DISPOSE,
EXIT_ON_CLOSE

defaultCloseOpe
ration

True /false

Small Image file (.png, .ico etc)

Crosshair, East Resize, West
Resize, Northwest Resize, Move,
Hand, Wait, Default cursor

Text

Value

If checked, allows resizing of the
frame

Resizable

Sets the icon image appears on
the title bar.

icon Image

Specifies the type of mouse
cursor when mouse moves on
the frame.

cursor

Sets the title (appears on the
top) of the frame

title

DescriptionProperties

Working with Panel- jPanel
 A Panel is container that holds other components displayed on the frame.
 To add Panel, just drag JPanel component on the frame and resize it.
 Drag other components (jButton, jTextFields etc.) from the Swing Control

Box and drop it onto panel.
 You can apply Layouts on the panel also, by selecting Layout Manager from

Right click Context menu.

Defines the maximum(x,y) size. X, Y valuesMaximumSize

Defines the preferred (x,y) size. X, Y valuesPreferredSize

Defines the minimum width and
height (x,y) in Twips(1/1440 inch)

X, Y valuesMinimumSize

Text

Color

No Border, Bevel Border,
Compound Border, Empty
order, Etched Border, Line
Border, Matte Border, Soft
Bevel Border, Titled Border

Color

Value

Sets the text for tooltip.ToolTipText

Sets the foreground color.Foreground

Specifies the type of Border applies
on the boundary of the panel.

Border

Sets the background color.Background

DescriptionProperties

Using HTML in Swing Control

We can HTML code in Text Property of various Swing
Controls, to make text more decorative by mixed
fonts, colour and formatting like bold, italic etc.

HTML formatting can be used in Text of Buttons, Tool
tips, tables, menu items etc. Do the following steps-

 Select the Text property of the control.
 In text editing window, write the HTML code along

with text to be appeared. Ex.
<HTML> How are <u>You</u>
it will display – How are You

 Commonly used HTML tags like
, <U> , ,
<I>, <P> etc. can be used.

Working with Push Buttons-- jButton

 A button belongs to JButton class of Swing control API.

 It is mostly used action component, and can be used to trigger
the associated events/methods in the application, when user
clicks.

Sets the font for the text of button.Font namefont

Determines whether Active or not.True/Falseenabled

Assign Shortcut key (Alt +key).Shortcut or Access keymnemonic

Caption of button.TextText

Text

Color

Border setting as in Jpanel

Color

Value

Sets the text for tool tip.toolTipText

Sets the foreground color.foreground

Specifies the type of Border applies
on the boundary of the panel.

Border

Sets the background color. It works
only when contentAreaFilled is
set to True.

background

DescriptionProperties

Working with jButton…
 Assigning Access keys to a Button:-
 You may assign Access key (Shortcut key) to

operate a button by Key board using Alt+ Key.
 Click on mnemonic property and set letter to be

assigned e.g. P for Print.
 For underlining Key letter, use HTML tag in Text

property. E.g. <html><u>P</u>rint to get Print.
 Adding Event Handlers to a Button:-
 You may define Action Event, Item Event, Mouse

Event, Key Event and Mouse Motion Event to a
button.

Generally, ActionPerformed() Event is handled like-
jButton1.ActionPerformed(java.awt.event.ActionEvent evt)

 You can also rename the Event handler method.

Working with jButtons..

 Commonly used Component methods of JButton.

Returns the status whether it is selected or not.
Ex. If (jButton1.isSelected()=true) …..

boolean isSelected()

Sets the button to appear as selected, mostly used
with check boxes.
Ex. jButton1.setSelected(true);

void
setSelected(Boolean)

Sets the icon file to be displayed.
Ex. jButton1.setIcon(new ImageIcon(“c:\\abc.png”));

void setIcon(icon)

Returns the text displayed on the button.
Ex. String result=jButton1.getText();
jLabel1.setText(result);

String getText()

Sets the text displayed on the button.
Ex. jButton1.setText(“You Clicked Me”);

void setText(String)

DescriptionMethod

Working with jLabel control

A Label control belongs to JLabel class and
used to display non-editable text. The
text to be displayed is controlled by text
property (design time) and setText()
method at run time. jLabel offers the
following features-

It can display Text or Image or both.
It may have bordered appearance.
Supports HTML for formatted text.

Commonly used Properties & Methods of jLabel

Specifies the image file to be displayed.Image file to be displayedIcon

Determines whether Active or notTrue/Falseenabled

Defines the font and size of text.Font name and sizeFont

Sets the text to be displayed.TextText

Text

Color

Color

Value

Sets the text for tool tip.ToolTipText

Sets the foreground color.foreground

Sets the background color. It works only
when opaque is set to True.

background

DescriptionProperties

Sets the image file to be displayed.
Ex. jLabel1.setIcon(new ImageIcon(“c:\\abc.gif”);

Void setIcon(Image)

Returns the text displayed by the label.
Ex. String st=jLabel1.getText();

String getText()

Sets the string of text to be displayed.
Ex. jLabel1.setText(“I am OK”);

Void setText(String)

DescriptionMethods

Displaying Image with jLabel

 Setting up Image at Design Time :-
 Add jLabel control and click on ellipse (…) of Icon

property in property window.
 In the dialogue box, select Image chooser option.
 Specify the path and file name in External Image option.
 Open source editor and go to top of the code and write-

import javax.swing.ImageIcon;
 Setting up Image at Run time:-
 Import the javax library by placing following command at

top of the code.
import.javax.swing.ImageIcon;

 Use the following command in a Event method where
image to be displayed or changed.
jLabel.setIcon(new ImageIcom(“c:\\abc.gif”))

Working with jTextField control

A jTextField is a versatile control, used to get
input from user or to display text. It is an
object of jTextField class and allow the user to
enter a single line of text.

jTextField offers the following features-
You can insert and select text.
You can scroll the text, if not fit in visible area.
You can use selected text in other application

using clipboard.

Commonly used Properties of jTextField

Allow user to edit text, if set to true.True/Falseeditable

Determines whether Active or notTrue/Falseenabled

Defines the font and size of text.Font name and sizeFont

Sets the text to be displayed.TextText

Color

Color

Value

Sets the foreground color.foreground

Sets the background color. It works only when
opaque is set to True.

background

DescriptionProperties

Returns the setting whether it is enabled or not.
Ex. Boolean b=jTextField1.isEnabled();

boolean isEnabled()

Returns the setting whether it is editable or not.
Ex. Boolean b=jTextField1.isEditable();

boolean isEditable()

Returns the text displayed by the label.
Ex. String st=jTextField1.getText();

String getText()

Sets the string of text to be displayed.
Ex. jTextField1.setText(“I am OK”);

Void setText(String)

DescriptionMethods

Working with jCheckBox control

A jCheckBox control belongs to JCheckBox class
of Swing controls. It indicates whether a
particular condition is on or off. You can use
Check boxes to give users true/false or yes/no
options.

Check Boxes may works independently to each
other, so that any number of check boxes can
be selected at the same time.

Some features of jCheckBox control’s are-
 It can be used to input True/False or Yes/No

typed input to the application.
Multiple check boxes can be selected at the

same time.

Commonly used Properties of jCheckBox

Adds Check Boxes in a GroupButton Group nameButton Group

Sets the text/Picture to be
displayed.

Text/PictureLabel

Check box will be selected, if set to
true. (default is false)

True/falseselected

Specifies the shortcut (access) key Charactermnemonic

Determines whether Active or notTrue/Falseenabled

Defines the font and size of text.Font name and sizeFont

Sets the text to be displayed.TextText

Color

Color

Value

Sets the foreground color.foreground

Sets the background color. background

DescriptionProperties

You must add a ButtonGroup control to the frame to group the check
boxes by using Button Group property of the check box.

Commonly used Methods of jCheckBox

Sets the check box selected, if true is given.
Ex. jCheckBox1.setSelected(true)

void setSelected(boolean)

Returns the state whether check box is selected or
not.
Ex. Boolean st=jCheckBox1.isSelected(true)

Boolean isSelected()

Sets the check box enables, if true is given.
Ex. jCheckBox1.setEnabled(true)

Void setEnabled(boolean)

Returns the state whether check box is enabled.
Ex. Boolean st=jCheckBox1.isEnabled(true)

Boolean isEnabled()

Returns the text displayed by on the check box.
Ex. String st=jCheckBox1.getText();

String getText()

Sets the string of text to be displayed.
Ex. jCheckBox1.setText(“Computer”);

Void setText(String)

DescriptionMethods

Working with jRadioButton control

A jRadioButton control belongs to JRadioButton
class of Swing controls. It is used to get choices
from the user. It is grouped control, so that only
one can be selected at a time among them.

Radio Button works in group, so that they must be
kept in a ButtonGroup container control like so
that only one can be selected at the same time.

Some features of jRadioButton control’s are-
 It can be used to input choices typed input to

the application.
Only one Radio button can be selected at a time.
They must be kept in a Button Group container

control to form a group.

Commonly used Properties of jRadioButton

Sets the text/Picture to be displayed.Text/PictureLabel

Check box will be selected, if set to true.
(default is false)

True/falseselected

Specifies the shortcut (access) key Charactermnemonic

Determines whether Active or notTrue/Falseenabled

Defines the font and size of text.Font name and sizeFont

Sets the text to be displayed.TextText

Name of control

Color

Color

Value

Specifies the name of group to which
Radio Button belongs.

buttonGroup

Sets the foreground color.Foreground

Sets the background color. Background

DescriptionProperties

Commonly used Methods of jRadioButton

Sets the Radio Button selected, if true is given.
Ex. jRadioButton1.setSelected(true)

void setSelected(boolean)

Returns the state whether Radio Button is selected or
not.
Ex. Boolean st=jRadioButton1.isSelected(true)

Boolean isSelected()

Sets the Radio Button enables, if true is given.
Ex. jRadioButton1.setEnabled(true)

Void setEnabled(boolean)

Returns the state whether radio button is enabled.
Ex. Boolean st=jRadioButton1.isEnabled(true)

Boolean isEnabled()

Returns the text displayed by on the check box.
Ex. String st=jRadioNutton1.getText();

String getText()

Sets the string of text to be displayed.
Ex. jRadioButton1.setText(“Science”);

Void setText(String)

DescriptionMethods

Working with jList control

A List (or List box) is box shaped control
containing list of objects, from which single or
multiple selection can be made. jList control
offers the following features-

A box shaped control capable to displaying a
list of choices (Text or graphics/images)

 It Allows single or multiple selection of items
using mouse.

Equipped with built-in scroll bar to view a
large list.

valueChanged() method of ListSelection
Listener is used to handle the JList events

How to add jList control with Frame

A jList can be attached with frame in
following way-

Select jList control from Swing palette ,
and drag and drop on the frame.

Select the jList control and click on (…)
button of Model property. A dialog box
appears.

Type list of choices in ListModelEditor
dialog box. Finally press OK button.

List Box is displayed on the frame with
typed choices.

Commonly used Properties of jList

Specifies that list will be active or not.True/Falseenabled

Specifies font’s name and size etc.Font namefont

Specifies the index of Items to appear selected
(default is -1 since no items is selected.)

ValueselectedIndex

Specifies the indices of selected items in form
of an array to show multiple items. (default -1)

valuesselectedIndices

User may select single item.
User may select Single range of items by
holding SHIFT key.
User may select Multiple range of Items by
holding CTRL key

SINGLE
SINGLE_INTERVAL

MULTIPLE_INTERVAL

selectionMode

Items for Choice

Color

Color

Value

Specifies the items to be displayed as a choice.model

Sets the foreground color.Foreground

Sets the background color. Background

DescriptionProperties

Commonly used Methods of jList

Other methods are- isEnabled(), setVisible(), setEnabled() etc. as used earlier.

Returns the value or selected items.
String st= (String) jList1.getSlectedValue();

Object getSelectedValue()

Returns the index of selected items in single
selection mode. Returns -1, if selection is not
made.

int getSelectedIndex()

Returns the values of selected items (multiple
selection)
String st[]= (string) jList1.getSlectedValues();

Object[] getSelectedValues()

Returns True if given Index is selected.
Ex: if (jList1.isSlectedIndex(2)) {…}

Boolean isSelectedIndex(int)

Clears the selection in the list.
Ex. jList1.clearSelection();

Void clearSelection()

DescriptionMethods

How to handle Selections in the jList

Single Selection

Apple
Mango
Banana

Orange
Papaya

2

Banana

Exit

jTextField1

jTextField2

jList1

Suppose we want to display
the index and value of
selected items i.e. 2 and
‘Banana’ in Text Fields when
user selects an items in the
list.

Just Right Click on jList control and choose
Events->ListSelection->ValueChanged
Write the following code in //TO DO Section………….

int x=jList1.getSelectedIndex();
String st= (String) jList1.getSelectedValue();
jTextField1.setText(“”+x);
jTextField2.setText(st);

How to handle Selections in the jList

Multiple Selection

Go to Events->ListSelection->ValueChanged of JList1 control
Write the following code in //TO DO Section………….

int x[]=jList1.getSelectedIndices();
Object st[]= jList1.getSelectedValues();
for(i=0;i< x.length ;i++)

jTextArea1.append(“”+x[i]+’\n’);
for(i=0;i<st.length ;i++)

jTextArea2.append((String) st[i]+’\n’);

2
3

Banana
Papaya

Exit

jTextArea1
jList1

Apple
Mango
Banan
aOrange

Papaya

jTextArea2

Adding/Removing Items at run time (Dynamic List)

An items in the list can be deleted or inserted run time by using special methods available
in DefaultListModel class. To implement Dynamic list follow the following steps-

 To import the DefaultListModel class, type the line at top -
import javax.swing.DefaultListModel;

 Select jList control and go to Model (…) Property and choose Custom code in the dialog
box.

 Type the following line in the dialog box and Press OK button.
new DefaultListModel()

 The following Methods may be used to manipulate the list at run time-

Returns the ListModel of the list.Object getModel()

Removes all entries from the list.Void removeAllElements()

Removes given object from given index.Void removeElementAt(object,position)

Removes specified items from the listBoolean removeElement(string/index)

Adds given item at given index.Void insertElementAt(string.position)

Adds given string at the end of the list.Void addElement (String)

Returns True if the list is empty (no items)Boolean isEmpty()

Returns the number of items currently in the
list. Ex. int x=jList1.size();

Int size()

DescriptionMethods

Adding/Removing Items at run time (Dynamic List)

The following steps should be followed in the event handler of
the button, where you want to implement the command.

1. Make a model object as-
DefaultListModel dlm = (DefaultListModel) jList1.getModel();

2. Use following command as per requirement-
// add item in the end of the list//

dlm.addElement(“Apple”);
// Insert item at given index in the list//

dlm.addElement(“Apple”,2);
// Remove selected item from the list//

dlm.removeElement(jList1.getSelectedIndex());
// Remove item from given position from the list//

dlm.removeElementAt(4);
// Remove given item from from the list//

dlm.removeElement(“Banana”);
3. Reflect all changes to the list

jList1.setModel(dlm)

Working with Image List (List of Images)

The following steps should be followed to implement the jList
containing Images choices instead of Text choices.

1. Add JList Control on the Frame.
2. Right Click on the jList and choose Customised Code from the

pop up menu.
3. Select Custom Property from the second drop down box of Code

Customizer dialog Box.
4. Now replace the following pre written line with the following

code.
String[] strings={“Item 1”, ”Item 2”, “Item 3”, …};

// Write New code like this //
ImageIcon[] String = {new ImageIcon(“c:\\aaa.jpg”),

new ImageIcon(“c:\\bbb.jpg”),
new ImageIcon(“c:\\ccc.jpg”)
};

5. Press Ok Button to closed the dialog box.
6. Open Source editor and write the following code at the top.

import javax.swing.ImageIcon;
7. Now save the application and run.

Working with jComboBox control

A jComboBox (TextField + List Box) is a control which offers
the list of choice which can be selected through a drop-
down list.

By default it is an un-editable control, but we can make it
editable by setting ‘editable‘ property as True.

jComboBox1ActionPerformed(..) method can be handled
when user selects an item from the combo.

Difference Between List & Combo Box
 In Combo Box, user can select and edit an item but in List,

Items can be selected and can not be edited.
 List does not offers Text Field where as Combo Box offers

Text Field.
 Combo Box offers a Drop-down list, so that it takes less

space in the frame, but List this feature is not available.
 List allows more than one items to be selected, but in

Combo Box, only one item can be selected.

Commonly used Properties of jComboBox

If True, you can edit/type new value or choice
in the Combo Box.

True/Falseeditable

Specifies that list will be active or not.True/Falseenabled

Specifies font’s name and size etc.Font namefont

Specifies the index of Items to appear
selected (default is -1 since no items is
selected.)

ValueselectedIndex

Specifies the indices of selected items.String/valuesselectedItem

Items for Choice

Color

Color

Value

Specifies the items to be displayed as a
choice.

model

Sets the foreground color.Foreground

Sets the background color. Background

DescriptionProperties

Commonly used Methods of jComboBox

Removes specified items from the combo.
Ex. jComboBox1.removeItem(“Banana”);

Void removeItem(String)

Removes items for given index from the combo.
Ex. jComboBox1.removeItemAt(2);

Void removeItemAt(index)

Insert a given item at given index.
Ex. jComboBox1.insertItemAt(“Banana”,2);

Void insertItemAt(string,int)

Returns the selected items.
String st= (String) jComboBox1.getSlectedItem();

String getSelectedItem()

Returns the index of selected items.int getSelectedIndex()

Returns True, if Combo box is editable.Boolean isEditable()

Removes all the items from combo. Void removeAllItems()

Returns the items at specified index.
String st=jComboBox1.getItemAt(2);

String getItemAt(int)

Returns the number of items in the combo Box.
int x=jComboBox1.getItemCount();

int getItemCount()

Adds an item to the choice list at the end.
Ex. jComboBox1.addItem(“Banana”);

Void addItem(string)

DescriptionMethods

Working with jTextArea control

A jTextArea control is a multi-line text component,
used to get input from user or to display text. It
is an object of JTextArea class.

By default, it does not wrap (move next line) lines
of text like word processor, if line goes beyond
the boundary. Some features are-

You can insert and select multiple line of text.
You can wrap text, if not fit in visible area.
You can use selected text in other application

using clipboard.

Commonly used Properties of jTextArea

Allow user to edit text, if set to
true.

True/Falseeditable

Determines whether Active or
not

True/Falseenabled

Defines the font and size of text.Font name and sizeFont

Sets the text to be displayed.TextText

Set the number of rows of in
text area

numberrows

Sets the number of columnsnumbercolumns

Defines Wrapping feature
enable/disable

True/ falselineWrap

Color

Color

Value

Sets the foreground color.Foreground

Sets the background color. Background

DescriptionProperties

Commonly used Methods of jTextArea

Enables or disables line wrap feature.Void setLineWrap(boolean)

Inserts specified text at given position. Use 0 to
insert at top.
Ex. jTextArea1.insert(“Amit”,1);

Void insert(string, int)

Adds specified text in the text area.
Ex: jTaxtArea1.append(“How are you”);

Void append(string)

Sets number of rows and columns for the text area.
Ex. jTextArea.setRows(5);

Void setRows(int)
Void setColumns()

Returns the setting whether it is editable or not.
Ex. Boolean b=jTextArea.isEditable();

boolean isEditable()

Sets the TextArea editable. Void setEditable(Boolean)

Returns the text displayed by the label.String getText()

Sets the string of text to be displayed.
Ex. jTextArea1.setText(“I am OK”);

Void setText(String)

DescriptionMethods

Working with Password Field

A jPasswordField is a type of Text field that
shows encrypted text i.e. actual text is not
shown, rather than ‘*’ is displayed.

The character displayed in place of typed
character is called echo Character, which
is controlled by echoChar property.

Commonly used Properties of jPasswordField

Specifies the character to be
displayed in place of typed
character.

CharacterechoChar

Allow user to edit text, if set to
true.

True/Falseeditable

Determines whether Active or notTrue/Falseenabled

Defines the font and size of text.Font name and
size

Font

Sets the text to be displayed.TextText

Color

Color

Value

Sets the foreground color.Foreground

Sets the background color. It works
only when opaque is set to True.

Background

DescriptionProperties

Commonly used Methods of jPasswordField

Returns the text displayed by the password field.
Ex. String pwd= new String (jPasswordField1.getPassword());

Char [] getPassword()*

Sets the echo character.
Ex. jPasswordField1.setEchoChar(‘#’);

Void setEchoChar(char)

DescriptionMethods

* getPassword() method returns a character array, not a string. To store
it in a string variable you need to use constructor of string.

Comparing Strings in JAVA

In Java two strings can not be compared directly, by using = operator.

Two methods (1) equals() (2) compareTo() are used for this purpose.

Equals() returns TRUE/FALSE but compareTo() returns 0 if both are
equal otherwise non-zero value is returned.

Ex. if (strname.equals(“Amit”)) {……} else {…..}

Working with jScrollBar control

A jScrollBar control belongs to jScrollBar class of Java. Generally it is
used to set the input values to the application like Sound slider,
Color contrast or brightness etc. Sometimes it is used to input
numerical values to an application, in place of Keyboard.

There are two types of scroll bars i.e. Horizontal and Vertical,
depending on its Orientation or appearance on the Frame.

Scroll bars offers a range of numbers starting from it MINIMUM to
MAXIMUM values. The current value of indicator can be used in the
application, which can be changes by scrolling the indicator.

When user changes the position of indicator, by clicking on Arrows of
scroll bar, an Unit Increment is accessed, where as on clicking on
scroll area, a Block Increment is occurred.

AdjustmentValueChanged method of Adjustment event is triggered
when scrollbar is changed.

Some features of jScrollBar’s are-
 It can be used to input some numerical values to the application.
 It may works as a slider to the various Multimedia controls to

control the sound and properties of the picture or video.
 It may be Horizontal or Vertical, by setting its Orientation property.

Commonly used Properties of jScrollBar

Determines the maximum valueValuemaximum

Returns current value of indicator.
Default is 0.

value value

value

value

Value

True/False

Value

Defines the amount of change when
user clicks on Arrows. Default is 1.

unitIncrement

Defines the orientation i.e. Horizontal or
Vertical. Default is Vertical.

Orientation

Determines the minimum value for the
scrollbar

minimum

Determines whether Active or notenabled

DescriptionProperties

Commonly used Methods of jScrollBar

Returns true id scrollbar is enabled.Void setEnabled(boolean)

Sets the current value for the scroll bar.Void setValue(int)

Returns the current value of the scroll bar.
Ex. int x= jScrollBar1.getValue();

Int getValue()

Sets the orientation of the scroll bar.
(0-vertical, 1- horizontal)
Ex. jScrollBar1.setOrientation(1);

Void setOrientation(int)

Returns the current orientation value of the scroll bar.Int getOrientation()

Sets the maximum value for the scroll bar.Void setMaximum(int)

Returns the maximum value of the scroll bar.Int getMaximum()

Returns the minimum value of the scroll bar.
Ex. int x= jScrollBar1.getMinimum();

Int getMinimum()

Sets the minimum value for the scroll bar.
Ex. jScrollBar1.setMinimum(0);

Void setMinimum(int)

DescriptionMethods

Working with jDialog Control

A dialog control is a control that can be used to display messages in
the application. It may contains message , image and buttons etc.

 Add jDialog control from swing controls and customize it as per
you requirement with text, image and buttons.

 It can be invoked in ActionPerformed Event of a button in top level
container jframe by jDialog1.setvisible(true) command.

 You can set text at run time by jDialog1.setText() method before
invoking it.

jDialog control

OK

Have a good day..
Close

Top level container frame setvisible(true)

Dispose()

jDialog1.setvisible(true);
jDialog1.dispose();

Steps to add Dialog Control (jDailog)

A dialog control belongs to Swing Window class available in Swing
control’s palette. The following step may be followed –

Design and Application using jFrame and other controls, as you did earlier.
 Drag jDialog control from Swing Window tab of Swing Tool box. This

will add jDialog1 node under Other component tab in Inspector
window.

 Now double click jDialog1 node.. In Inspector window, this will open a
blank Dialog frame in Design Area.

 Attach jLabel and jButton controls as per your choice and customize
them Text messages.

 Double Click on the jButton control and write the given code in //todo
section, to close the dialog box.

jDialog1.dispose()
 Now double on jFrame node in Inspector window to open jFrame

control in design area.
 Double click on the button on which you want to attach Dialog

window… and write the command in /TODo section , to invoke the
Dialog control.

jDialog1.setVisible(true)
 Now RUN the application.

Understanding Focus

 A Focus is the ability to receive user input/
response through Mouse or Keyboard. When object
or control has focus, it can receive input from user.

 An object or control can receive focus only if its
enabled and visible property are set to true.

Most of the controls provides FOCUS_GAINED()
and FOCUS_LOST() method in FocusEvent by the
FocusListener. FOCUS_LOST() is generally used for
validation of data.

 You can give focus to an object at run time by
invoking the requestFocus() method in the code.

Ex. jTextBox2.requestFocus();

