
JAVA Classes & Libraries

Informatics Practices
Class XII

Chapter 6:

By- Rajesh Kumar Mishra
PGT (Comp.Sc.)

KV No.1, AFS, Suratgarh
e-mail : rkmalld@gmail.com

Objective

In this presentation, you will learn about the
following-

 Access Specifiers:
How to control access to class members
using private, protected, public and friendly
(default) specifiers.

 Using JAVA Class Libraries:
How to use Java Class Libraries for various
operations on Strings and Mathematical
functions.

 Concept of Packages:
How to create and use packages to handle a
large program.

What is Package ?

A group of classes is called package
 A large program can be divided into smaller modules

and compiled separately. Such modules are named
Package.

 Each package may contain various class definitions
under the same package name and stored in a folder.

 Java offers some ready to use packages like java.io
package. We can write our own packages also.

 We can use a package in a program by using import
statement at top of the program.

//to import all members//
import mypackage.*;

// to import selected member class//
import mypackage.myclass;

Packages in JAVA

JAVA contains a extensive library of pre-
written classes, which can be used in a
program. These classes are divided in groups
(package). Some packages are-

 java.applet
 java.awt
 java.io
 java.lang
 java.net
 java.util

Note: java.lang are imported by default i.e.
no import statement is required.

How to create your own package ?

Being a collection of related classes, a
package may be user-defined also. We can
group related classes and interface in a group
(package) by using package statement.

package myschool;
class student
{………….
………….

}
class teacher
{…………..
…………..

}

Once a package has been
created, it can be used in other
programs by importing it.

import myschool.*;

What is Derived class (Sub-class) ?

A class can derived from other class. The derived class also
called sub-class. A derived class may inherit all the data and
method members from its parent. This principle also known
as Inheritance.

E.g. If human class is defined, we can derived student and
teacher class by inheriting all the members of human class,
since teacher and student both are human beings.

A sub-class may be derived in
the same package or different
package also.

//e.g. derivation of sub class//
class human

{ String name;
int age;
void method1()
{……….}

}
class student extends human
{int rollno;

…………….
void method2()
{………..}
}

class teacher extends human
{int empno;

…………….
void method3()
{………..}
}

Access Specifiers
The Access Specifiers control access to members of class from /

within Java Program. Java supports various Access Specifiers
to control the accessibility of class members.

 Private :
A variable or method declared as private, may not be
accessed outside of the class. Only class member can access
them, since they are private to others.

 Protected:
Protected members can be accessed by the class members
and subclasses (derived classes) in current package or in
other package.

 Public:
Class members declared as public, are accessible to any
other class i.e. everywhere , since they are public.

 Package (default):
If no any specifier is mentioned, default or friendly access is
assumed. Class member may be accessed by any other
Class members available in the same package, but not
accessible by the other classes outside the package, even
subclasses.

Private Access Specifier

Members declared as private are accessible by the members of
the same class, since they are private. A private key word is
used to specify.
//e.g to demonstrate private specifier.//
class abc

{ private int p;
private void method1()

{ p=10;
system.out.print(“I am Private method”);

}
}

class xyz
{……….
void method2()

{ abc x = new abc();
x.p =10;
x.method1() ;

}
}

Illegal use of members of
class abc, since they are

private to abc

legal use of class members.
(Only class members can
access private members)

Lets another Package…
package yourpackage;
import mypackage.*;
class pqr extends abc

{ void method3()
{ abc x=new abc();

pqr y=new pqr();

}
}

Protected Access Specifier

Protected members are accessible by all the classes in the same
package and sub-classes (same of different packages). A
protected key word is used to specify.

Package mypackage;
class abc

{ protected int p;
protected void method1()

{ p=10;
system.out.print(“Protected

method”);
}

}
class xyz
{……….
void method2()

{ abc x = new abc();
x.p =10;
x.method1() ;

}
}

legal use

legal

x.p=10;
x.method1();

y.p=10;
y.method1();

illegal

legal i.e.
derived

class pqr

Public Access Specifier

Public Members
can be access at
anywhere i.e.
same or different
package.
A public key word
is used to specify.

package mypackage;
class abc

{ public int p;
public void method1()

{ p=10;
system.out.print(“Public method”);

}
}

legal use

package yourpackage;
import mypackage.* ;
class xyz
{……….
void method2()

{ abc x = new abc();
x.p =10;
x.method1() ;

}
}

legal use

Package (friendly) Access Specifier

If no specifier is explicitly specified, Java assumes default
(friendly) access i.e. all the members are accessible in all
other classes of the same package only, since they are trusted
or friends. This is called Package level access.

No any key word is used to specify default access.

package mypackage;
class abc

{ int p;
void method1()

{ p=10;
system.out.print(“Package method”);

}
}

class xyz
{……….
void method2()

{ abc x = new abc();
x.p =10;
x.method1() ;

}
}

legal use

legal use

Access specifier – At a Glance

Access specifiers are applicable to both
the Data and Method members either
Instance or class member (Static).

Package

Private

Protected

Public

Accessibility
by the sub-
class (other
package)

Accessibility
by the sub-
class (same
package)

Classes in
other
packages

Classes in
the same
package

Access
specifier

JAVA Libraries

 A library is readymade and reusable
component/codes that can be used in a program to
perform predefined task.

 Some commonly used Java libraries are Math
Library, String Library, Utility Library and IO
Library etc.

 You can use import statement at the top of the
program to include the Java libraries.

import java.io.*;

 The java.lang is the default imported library in
your program without writing import statement.

String Library & its commonly used methods

Coverts all the characters of this string into Upper case.String toUpperCase(str)

Returns position of chr into this string.
e.g. int x= str1.indexOf(‘A’);

Int indexOf (chr)

Coverts all the characters of this string into lowercase.String toLowerCase(str)

Return a string after appending str into this string.
e.g. String name= firstname.concat(lastname);

String concat(str)

Returns a substring from this string from num1 to num2
position.

String substring(num1,num2)

Returns a new string after replacing all occurrences of char1
by char2.

String replace(char1,char2)

Returns the character at given position in this string.
e.g. char ch=str1.charAt(3);

char charAt(num)

Returns the length of this string.
e.g. int x=str1.length();

int length(str)

Compare this string to given string but ignores case difference.boolean equalsIgnoreCase(str)

Compare two strings in alphabetical order. int compareTo(str1,str2)

Compare this (current) string to given string and returns true
if both are true otherwise false.
e.g. boolean test=str1.equals(str2);

boolen equals(str)

DescriptionMethod Prototype

Math Library & its commonly used methods

It rounds off a given number to its nearest
integer. It can take float/double as argument.
e.g.
system.out.print(“”+math.round(1.5)); 2
system.out.print(“”+math.round(-1.5)); -1

round(num1)

It computes num1 num2 , where num1 and
num2 are numbers.
e.g. syste.out.print(“”+math.pow(2,3);

pow(num1,num2)

DescriptionMethod Prototype

 Java provides math library, which available under java.lang package.

 In order to use functions/methods of math library, you need to
invoke function using math keywords before the function.

e.g. x=math.abs(-7.5);

Using Dates & Times in JAVA

The following fields can be used to access
various date and time values.
c.get(Calendar.DATE)
c.get(Calendar.MONTH)
c.get(Calendar.YEAR)
c.get(Calendar.HOUR)
c.get(Calendar.MINUTE)
c.get(Calendar.SECOND)

Calendar c =
Calendar.getInstance();

It returns system date in the given format.
Tue Jul 20 17:30:22 GMT+05:30 2010

Date d=new Date();

 Java offers two classes in java.util package to manipulate date and
time.

1. java.util.Date 2. java.util.Calendar

 In order to use Date & calendar, you need to import java.util
package. E.g. import java.util.*;

