
Advanced MySQL-
Grouping Records and Joining Tables

Informatics Practices
Class XII

Chapter 16:

By- Rajesh Kumar Mishra
PGT (Comp.Sc.)
KV No.1, AFS, Suratgarh (Raj.)
e-mail : rkmalld@gmail.com

Grouping Records in a Query

 Some time it is required to apply a
query in a group of records instead of
whole table.

 You can group records by using GROUP
BY <Column Name> clause with Select
command. A group column is chosen
which have non-distinct values like City,
Job etc.

 Generally, Aggregate Functions [MIN(),
MAX(), SUM(), AVG(), COUNT()] etc.
are applied on groups.

Aggregate or Group Functions
Name Purpose Example

SUM() Returns the sum of given
column.

Select SUM(Pay) from Emp;
Select Sum(Pay), Sum(Net)
from Emp;

MIN() Returns the minimum value in
the given column.

Select MIN(Pay) from Emp;

MAX() Returns the maximum value
in the given column.

Select MAX(Pay) from Emp;

AVG() Returns the Average value of
the given column.

Select AVG(Pay) from Emp;

COUNT() Returns the total number of
values/ records as per given
column.

Select COUNT(Name) from
Emp;
Select COUNT(*) from Emp;

A query using Aggregate Function with GROUP BY clause works on
the group instead of whole records in the table.

Aggregate or Group Functions

An Aggregate function may applied on a column with DISTINCT
or ALL keyword. If nothing is given ALL is assumed.

 SUM ([DISTINCT|ALL] <Column>)
This function returns the sum of values in given column or
expression.
mysql> Select Sum(Sal) from EMP;
mysql> Select Sum(DISTINCT Sal) from EMP;
mysql> Select Sum (Sal) from EMP where City=‘Kanpur’;
mysql> Select Sum (Sal) from EMP Group By City;
mysql> Select Job, Sum(Sal) from EMP Group By Job;

 MIN ([DISTINCT | ALL] <column>)
This functions returns the Minimum value in the given column.

mysql> Select Min(Sal) from EMP;
mysql> Select Min(Sal) from EMP Group By City;
mysql> Select Job, Min(Sal) from EMP Group By Job;

Aggregate or Group Functions

 MAX ([DISTINCT|ALL] <Column>)
This function returns the Maximum value in given column.
mysql> Select Max(Sal) from EMP;
mysql> Select Max(Sal) from EMP where City=‘Kanpur’;
mysql> Select Max(Sal) from EMP Group By City;

 AVG ([DISTINCT | ALL] <column>)
This functions returns the Average value in the given column.

mysql> Select AVG(Sal) from EMP;
mysql> Select AVG(Sal) from EMP Group By City;

 COUNT ([DISTINCT | ALL] <*|column>)
This functions returns the number of rows in the given column.

mysql> Select Count (*) from EMP;
mysql> Select Count(Sal) from EMP Group By City;
mysql> Select Count(*), Sum(Sal) from EMP Group By Job;

Using Group By clause in Select Query

 Grouping Results
The Group By clause along with Aggregate functions may cause

of grouping.
mysql> Select Max(Sal) from EMP Group By City;

 Grouping on Multiple columns- Nested Groups
You may define multiple columns with GROUP BY to make a

nested groups.
mysql> Select City, Job, Count (*) from EMP Group By City, Job;
 Condition with Group
You may use any condition on group, if required. HAVING

<condition> clause is used to apply a condition.
mysql> Select Job, Count (*) from EMP

Group By Job HAVING Count(*)<=3;

Where clause is not used with aggregate functions.
HAVING can’t be used without GROUP By clause.

Joining tables - Join Query
Some times it is required to access information from two or

more tables , which requires the Joining of two or more
tables. Such query is called Join Query.

MySQL facilitates you to handle Join Queries. The major types of
Join is as follows-

 Cross Join (Cartesian Product)
 Equi Join
 Non-Equi Join
 Natural Join
 Outer Join

 Left Outer Join
 Right Outer Join
 Full Outer Join

Cross Join – Mathematical Principle

Consider the two set A= {a,b} and B={1,2}
The Cartesian Product i.e. AxB = {(a,1) (a,2) (b,1) (b,2)}
Similarly, we may compute Cross Join of two tables by joining

each Record of first table to each record of second table.

A B C
p q s
m n t
o p s
l m u

C X Y
s q r
t n m
o p s

A B C C X Y
p q s s q r
p q s t n m
p q s o p s
m n t s q r
m n t t n m
m n t o p s
… … … …
l m u o p s

R S R x S

X

The table will contain
(4x3=12) rows and 6

columns.

Equvi Join – Mathematical Principle

In Equvi Join, records are joined on the equality condition of
Joining Column. Generally, the Join column is column which is
common in both tables.

Consider the following table R and S having C as Join column.

A B C
p q s
m n t
o p s
l m u

C X Y
s q r
t n m
o p s

A B C C X Y
p q s s q r
m n t t n m
o p s s p r

R S T (Equi Join)

The result table will contain 6 columns but
records are selected those are having Equal

value for C column in both table.

Non-Equvi Join – Mathematical Principle

In Non-Equvi Join, records are joined on the condition other than
Equal operator (>,<,<>,>=,<=) for Joining Column (common
column).

Consider the following table R and S having C as Join column and
<> (not equal) operator is applied in join condition.

A B C
p q s
m n t
o p s
l m u

C X Y
s q r
t n m
o p s

A B C C X Y
p q s t n m
p q s o p s
m n t s p r
m n t o p s
o p s t n m
o p s o p s
l m u s q R
l m u t n M
l m u o p s

R S T (Non-Equi Join)

The result table will contain 6
columns but records are selected
those are having not- equal value

for C column in both table.

<>

Natural Join – Mathematical Principle

The Natural Join is much similar to Equi Join i.e. records are
joined on the equality condition of Joining Column except that
the common column appears one time.

Consider the following table R and S having C as Join column.

A B C
p q s
m n t
o p s
l m u

C X Y
s q r
t n m
o p s

A B C X Y
p q s q r
m n t n m
o p s p r

R S T (Natural Join)

The result table will contain 5 columns (common column is
eliminated) but records are selected those are having

Equal value for C column in both table.

Outer Join (Left, Right and Full)

The Outer join is much similar to Natural Join but it also contains
left (ignored) record during Join.

Left outer Join= Natural Join + Record ignored from Left Table.
Right outer Join= Natural Join + Record ignored from Right Table.
Full outer Join= Natural Join + Record ignored from Left & Right Table.

A B C
p q s
m n t
o p s
l m u

C X Y
s q r
t n m
o p s

A B C X Y
p q s q r
m n t n m
o p s p R
l m u - -
- - o p s

R S T (Full Outer Join)

Left outer Join result contains ignored record from Left table only.
Right Outer Join contains ignored record from Right table only.

The Full outer Join result contains ignored records from both table.

Implementing Join Operation in MySQL

Suppose two table EMP and DEPT are given -

EmpID EName City Job Pay DeptNo

E1 Amitabh Mumbai Manager 50000 D1
E2 Sharukh Delhi Manager 40000 D2
E3 Amir Mumbai Engineer 30000 D1
E4 Kimmi Kanpur Operator 10000 D2
E4 Puneet Chennai Executive 18000 D3
E5 Anupam Kolkatta Manager 35000 D3
E6 Syna Banglore Secretary 15000 D1
… …. …. …. … …

DeptNo DName Location

D1 Production Mumbai
D2 Sales Delhi
D3 Admn Mumbai
D4 Research Chennai

EMP

DEPT

Suppose we want complete
details of employees with their
Deptt. Name and Location……
this query requires the join of

both tables

How to Join ?

MySQL offers different ways by which you may join two or more tables.
 Method 1 : Using Multiple table with FROM clause

The simplest way to implement JOIN operation , is the use of
multiple table with FROM clause followed with Joining condition in
WHERE clause.

Select * From EMP, DEPT
Where Emp.DeptNo=Dept.DeptNo ;

Select E.*, D.* From EMP E, DEPT D
Where E.DeptNo=D.DeptNo

 Method 2: Using JOIN keyword
MySQL offers JOIN keyword, which can be used to implement all
type of Join operation.

Select * From EMP JOIN DEPT ON Emp.DeptNo=Dept.DeptNo ;

To avoid ambiguity
you should use

Qualified name i.e.
<Table>.<column>

You may Alias the
tables for easy

referencing

Using Multiple Table with FROM clause

The General Syntax of Joining table is-
SELECT < List of Columns> FROM <Table1, Table 2, …>
WHERE <Joining Condition> [Order By ..] [Group By ..]

 You may add more condition with Joining Condition using AND/OR
NOT operators, if required.

 All types of Join (Equi, No-Equi, Natural etc. are implemented by
changing the Operators in Joining Condition and selection of
columns with SELECT clause.

Ex. Find out the name of Employees working in Production Deptt.
Select Ename From EMP, DEPT
Where Emp.DeptNo=Dept.DeptNo AND Dname=‘Production’;

Ex. Find out the name of Employees working in same city from where
they belongs (hometown).

Select Ename From EMP, DEPT
Where Emp.DeptNo=Dept.DeptNo And City=Location;

Using JOIN keyword with FROM clause

MySQL ‘s JOIN Keyword may be used with From clause.
SELECT < List of Columns>
FROM <Table1> [CROSS][NATURAL][LEFT][RIGHT]
JOIN <Table2> [ON <Joining Condition>] [USING <column>]
[WHERE <Condition>] [Order By ..] [Group By ..]

Ex. Find out the name of Employees working in Production Deptt.
Select Ename From EMP JOIN DEPT ON Emp.DeptNo=Dept.DeptNo
Where Dname=‘Production’;

Or Select Ename From EMP JOIN DEPT USING DeptNo
Where Dname=‘Production’;

Ex. Find out the name of Employees working in same city from where
they belongs (hometown) .

Select Ename
From EMP NATURAL JOIN DEPT ON Emp.DeptNo=Dept.DeptNo
WHERE City=Location;

Nested Query (A query within another query)

Sometimes it is required to join two sub-queries to solve a
problem related to the single or multiple table. Nested query
contains multiple query in which inner query evaluated first.

The general form to write Nested query is-
Select …. From <Table>
Where <Column1> <Operator>
(Select Column1 From <Table> [Where <Condition>])

Ex. Find out the name of Employees working in Production Deptt.
Select Ename From EMP
Where DeptNo =
(Select DeptNo From DEPT Where DName=‘Production’);

Ex. Find out the name of Employees who are getting more pay than
‘Ankit’.

Select Ename From EMP
Where Pay >= (Select Pay From EMP WHERE Ename=‘Ankit’);

