
More On Database & SQL
– Advanced Concepts

Informatics Practices
Class XII (CBSE Board)

Chapter 9:

Authored By:- Rajesh Kumar Mishra, PGT (Comp.Sc.)
Kendriya Vidyalaya Upper Camp, Dehradun (Uttarakhand)
e-mail : rkmalld@gmail.com

Revised as per
CBSE

Curriculum
2015

Visit www.ip4you.blogspot.com for more….

Integrity Constraints
One of the major responsibility of a DBMS is to maintain the
Integrity of the data i.e. Data being stored in the Database
must be correct and valid.
An Integrity Constraints or Constraints are the rules, condition
or checks applicable to a column or table which ensures the
integrity or validity of data.
The following constraints are commonly used in MySQL.
 NOT NULL
 PRIMARY KEY
 UNIQUE *
 DEFAULT *
 CHECK *
 FOREIGN KEY *

Most of the constraints are applied with
Column definition which are called
Column-Level (in-line Constraints) ,but
some of them may be applied at column
Level as well as Table-Level (Out-line
constraints) i.e. after defining all the
columns. Ex.- Primary Key & Foreign Key

* Not included in the syllabus (recommended for advanced learning)

S.N Constraints Description
1 NOT NULL Ensures that a column cannot have NULL value.
2 DEFAULT Provides a default value for a column, when

nothing is given.
3 UNIQUE Ensures that all values in a column are different.
4 CHECK Ensures that all values in a column satisfy

certain condition.
5 PRIMARY KEY Used to identify a row uniquely.
6 FOREIGN KEY Used to ensure Referential Integrity of the data.

Type of Constraints

UNIQUE v/s PRIMARY KEY
 UNIQUE allows NULL values but PRIMERY KEY does not.

 Multiple column may have UNIQUE constraints, but there is
only one PRIMERY KEY constraints in a table.

Implementing Primary Key Constraints

mysql> CREATE TABLE Student
(StCode char(3) NOT NULL PRIMARY KEY,
Stname char(20) NOT NULL,

………………………..
);

Defining Primary Key at Column Level:

Defining Primary Key at Table Level:
mysql> CREATE TABLE Student

(StCode char(3) NOT NULL,
Stname char(20) NOT NULL,
………………………..
PRIMARY KEY (StCode));

Constraint is
defined after all

column
definitions.

A Composite (multi-column) Primary key can be defined as only
a Table level whereas Single-column Primary key can be defined
in both way i.e. Column level or Table level.

Implementing Constraints in the Table

mysql> CREATE TABLE Student
(StCode char(3) NOT NULL PRIMARY KEY,
Stname char(20) NOT NULL,
StAdd varchar(40),
AdmNo char(5) UNIQUE,
StSex char(1) DEFAULT ‘M’,
StAge integer CHECK (StAge>=5));

CREATE TABLE EMP (Code char(3) NOT NULL,
Name char(20) NOT NULL,
City varchar(40),
Pay Decimal(10,2),
PRIMARY KEY (Code));

Table level
constraints are
defined after all
column definitions.

Column level
constraints are
defined with
column definitions.

Implementing Foreign Key Constraints
 A Foreign key is non-key column in a table whose value is

derived from the Primary key of some other table.
 Each time when record is inserted or updated in the table,

the other table is referenced. This constraints is also called
Referential Integrity Constraints.

 This constraints requires two tables in which Reference table
(having Primary key) called Parent table and table having
Foreign key is called Child table.

EMPLOYEE
EmpID
Name
City
Sal
DeptNo

DEPARTMENT
DeptNo
DeptName
Head
Location

Primary
key

Foreign
Key

Child Table
Parent Table

Implementing Foreign Key Cont..

CREATE TABLE Department
(DeptNo char(2) NOT NULL PRIMARY KEY,

DeptName char(10) NOT NULL,
Head char(30));

CREATE TABLE Employee
(EmpNo char(3) NOT NULL PRIMARY KEY,

Name char(30) NOT NULL,
City char(20),
Sal decimal(8,2),
DeptNo char(2),
FOREGIN KEY (DeptNo) REFERENCES Departmet (DeptNo));

Child Table in
which Foreign
key is defined.

Parent
table

A Table may have multiple Foreign keys.
Foregn key may have repeated values i.e. Non-Key Column

Parent table and column
to be referenced..

Modifying Table Constraints
 Adding new column and Constraints

ALTER TABLE <Table Name>
ADD <Column>[<data type> <size>][<Constraints>]
mysql> ALTER TABLE Student ADD (TelNo Integer);

mysql> ALTER TABLE Student ADD (Age Integer CHECK (Age>=5));
mysql> ALTER TABLE Emp ADD Sal Number(8,2) DEFAULT 5000 ;
mysql> ALTER TABLE Emp ADD PRIMARY KEY (EmpID);
mysql> ALTER TABLE Emp ADD PRIMARY KEY (Name,DOB);

 Modifying Existing Column and Constraints
ALTER TABLE <Table Name>
MODIFY <Column>[<data type> <size>] [<Constraints>]
mysql> ALTER TABLE Student MODIFY Name VARCHAR(40);
mysql> ALTER TABLE Emp MODIFY (Sal DEFAULT 4000);
mysql> ALTER TABLE Emp MODIFY (EmpName NOT NULL);

Modifying Table Constrains cont..

 Removing Column & Constraints
ALTER TABLE <Table Name>
DROP <Column name> |<Constraints>

mysql> ALTER TABLE Student DROP TelNo;

mysql> ALTER TABLE Emp DROP JOB, DROP Pay;

mysql> ALTER TABLE Student DROP PRIMARY KEY;

 Changing Column Name of Existing Column
ALTER TABLE <Table Name>
CHANGE <Old name><New Definition>
mysql> ALTER TABLE Student

CHANGE Name Stname Char(40);

Viewing & Disabling Constraints

 To View the Constraints
The following command will show all the details like
columns definitions and constraints of EMP table.
mysql> SHOW CREATE TABLE EMP;
Alternatively you can use DESCribe command:
mysql> DESC EMP;

 Enabling / Disabling Foreign Key Constraint
 You may enable or disable Foreign key constraints by

setting the value of FOREIGN_KEY_CHECKS variable.
 You can’t disable Primary key, however it can be

dropped (deleted) by Alter Table… command.
 To Disabling Foreign Key Constraint

mysql> SET FOREIGN_KEY_CHECKS = 0;
 To Enable Foreign Key Constraint

mysql> SET FOREIGN_KEY_CHECKS = 1;

Grouping Records in a Query
 Some time it is required to apply a Select query in a group

of records instead of whole table.
 You can group records by using GROUP BY <column>

clause with Select command. A group column is chosen
which have non-distinct (repeating) values like City, Job etc.

 Generally, the following Aggregate Functions [MIN(), MAX(),
SUM(), AVG(), COUNT()] etc. are applied on groups.
Name Purpose

SUM() Returns the sum of given column.
MIN() Returns the minimum value in the given column.
MAX() Returns the maximum value in the given column.

AVG() Returns the Average value of the given column.
COUNT() Returns the total number of values/ records as per given

column.

Aggregate Functions & NULL Values

Consider a table Emp having following records as-

mysql> Select Sum(Sal) from EMP; 12000
mysql> Select Min(Sal) from EMP; 3500
mysql> Select Max(Sal) from EMP; 4500
mysql> Select Count(Sal) from EMP; 3
mysql> Select Avg(Sal) from EMP; 4000
mysql> Select Count(*) from EMP; 5

Emp
Code Name Sal
E1 Ram Kumar NULL
E2 Suchitra 4500
E3 Yogendra NULL
E4 Sushil Kr 3500
E5 Lovely 4000

Aggregate function
ignores NULL values i.e.
NULL values does not

play any role in
calculations.

Aggregate Functions & Group

An Aggregate function may applied on a column with DISTINCT
or ALL keyword. If nothing is given ALL is assumed.
 Using SUM (<Column>)

This function returns the sum of values in given column or
expression.
mysql> Select Sum(Sal) from EMP;
mysql> Select Sum(DISTINCT Sal) from EMP;
mysql> Select Sum (Sal) from EMP where City=‘Kanpur’;
mysql> Select Sum (Sal) from EMP Group By City;
mysql> Select Job, Sum(Sal) from EMP Group By Job;

 Using MIN (<column>)
This functions returns the Minimum value in the given column.

mysql> Select Min(Sal) from EMP;
mysql> Select Min(Sal) from EMP Group By City;
mysql> Select Job, Min(Sal) from EMP Group By Job;

Aggregate Functions & Group

 Using MAX (<Column>)
This function returns the Maximum value in given column.
mysql> Select Max(Sal) from EMP;
mysql> Select Max(Sal) from EMP where City=‘Kanpur’;
mysql> Select Max(Sal) from EMP Group By City;

 Using AVG (<column>)
This functions returns the Average value in the given column.

mysql> Select AVG(Sal) from EMP;

mysql> Select AVG(Sal) from EMP Group By City;

 Using COUNT (<*|column>)
This functions returns the number of rows in the given column.

mysql> Select Count (*) from EMP;
mysql> Select Count(Sal) from EMP Group By City;
mysql> Select Count(*), Sum(Sal) from EMP Group By Job;

Aggregate Functions & Conditions

You may use any condition on group, if required. HAVING
<condition> clause is used to apply a condition on a group.
mysql> Select Job, Sum(Pay) from EMP

Group By Job HAVING Sum(Pay)>=8000;
mysql> Select Job, Sum(Pay) from EMP

Group By Job HAVING Avg(Pay)>=7000;
mysql> Select Job, Sum(Pay) from EMP

Group By Job HAVING Count(*)>=5;
mysql> Select Job, Min(Pay),Max(Pay), Avg(Pay) from EMP

Group By Job HAVING Sum(Pay)>=8000;
mysql> Select Job, Sum(Pay) from EMP Where City=‘Dehradun’

Group By Job HAVING Count(*)>=5;

Where clause works in respect of whole table but Having works
on Group only. If Where and Having both are used then Where
will be executed first.

‘Having’ is
used with
Group By

Clause only.

Displaying Data from Multiple Tables - Join Query

Some times it is required to access the
information from two or more tables, which
requires the Joining of two or more tables.
Such query is called Join Query.
MySQL facilitates you to handle Join Queries.
The major types of Join is as follows-
 Cross Join (Cartesian Product)
 Equi Join
 Non-Equi Join
 Natural Join

Cross Join – Mathematical Principle

Consider the two set A= {a,b} and B={1,2}
The Cartesian Product i.e. AxB = {(a,1) (a,2) (b,1) (b,2)}
Similarly, we may compute Cross Join of two tables by joining
each Record of first table with each record of second table.

A B C
p q s
m n t
o p s
l m u

C X Y
s q r
t n m
o p s

A B C C X Y
p q s s q r
p q s t n m
p q s o p s
m n t s q r
m n t t n m
m n t o p s
… … … …
l m u o p s

R S R x S

X

The table will contain
(4x3=12) rows and 6

columns.

Equi Join – Mathematical Principle

In Equvi Join, records are joined on the equality condition of
Joining Column. Generally, the Join column is a column which is
common in both tables.
Consider the following table R and S having C as Join column.

A B C
p q s
m n t
o p s
l m u

C X Y
s q r
t n m
o p s

A B C C X Y
p q s s q r
m n t t n m
o p s s p r

R S T (Equi Join)

The result table will contain 6 columns but
records are selected those are having Equal

value for C column in both table.

Non-Equi Join – Mathematical Principle

In Non-Equi Join, records are joined on the condition other than
Equal operator (>,<,<>,>=,<=) for Joining Column (common
column).
Consider the following table R and S having C as Join column and
<> (not equal) operator is applied in join condition.

A B C
p q s
m n t
o p s
l m u

C X Y
s q r
t n m
o p s

A B C C X Y
p q s t n m
p q s o p s
m n t s p r
m n t o p s
o p s t n m
o p s o p s
l m u s q R
l m u t n M
l m u o p s

R S T (Non-Equi Join)

The result table will contain 6
columns but records are selected
those are having not- equal value

for C column in both table.

<>

Natural Join – Mathematical Principle

The Natural Join is much similar to Equi Join i.e. records are
joined on the equality condition of Joining Column except that the
common column appears one time.
Consider the following table R and S having C as Join column.

A B C
p q s
m n t
o p s
l m u

C X Y
s q r
t n m
o p s

A B C X Y
p q s q r
m n t n m
o p s p r

R S T (Natural Join)

The result table will contain 5 columns (common column is
eliminated) but records are selected those are having

Equal value for C column in both table.

Implementing Join Operation in MySQL

Consider the two tables EMP and DEPT -

EmpID EName City Job Pay DeptNo

E1 Amitabh Mumbai Manager 50000 D1
E2 Sharukh Delhi Manager 40000 D2
E3 Amir Mumbai Engineer 30000 D1
E4 Kimmi Kanpur Operator 10000 D2
E4 Puneet Chennai Executive 18000 D3
E5 Anupam Kolkatta Manager 35000 D3
E6 Syna Banglore Secretary 15000 D1
… …. …. …. … …

DeptNo DName Location

D1 Production Mumbai
D2 Sales Delhi
D3 Admn Mumbai
D4 Research Chennai

EMP

DEPT

Suppose we want complete
details of employees with their
Deptt. Name and Location……
this query requires the join of

both tables

Foreign Key

Pr
im

ar
y

Ke
y

Primary Key

How to Join ?
MySQL offers different ways by which you may join two or more tables.
 Method 1 : Using Multiple table with FROM clause

The simplest way to implement JOIN operation, is the use of
multiple table with FROM clause followed with Joining
condition in WHERE clause.

Select * From EMP, DEPT
Where Emp.DeptNo = Dept.DeptNo ;

If common column are differently spelled then no need to use
Qualified name.

 Method 2: Using JOIN keyword
MySQL offers JOIN keyword, which can be used to implement
all type of Join operation.

Select * From EMP JOIN DEPT ON Emp.DeptNo=Dept.DeptNo ;

To avoid ambiguity
you should use

Qualified name i.e.
<Table>.<column>

Using Multiple Table with FROM clause

The General Syntax of Joining table is-
SELECT < List of Columns> FROM <Table1, Table 2, …>
WHERE <Joining Condition> [Order By ..] [Group By ..]

 You may add more conditions using AND/OR NOT operators,
if required.

 All types of Join (Equi, No-Equi, Natural etc. are implemented
by changing the Operators in Joining Condition and selection
of columns with SELECT clause.

Ex. Find out the name of Employees working in Production Deptt.
Select Ename From EMP, DEPT
Where Emp.DeptNo=Dept.DeptNo AND Dname=‘Production’;

Ex. Find out the name of Employees working in same city from where
they belongs (hometown).

Select Ename From EMP, DEPT
Where Emp.DeptNo=Dept.DeptNo And City=Location;

Using JOIN keyword with FROM clause

MySQL ‘s JOIN Keyword may be used with From clause.

SELECT < List of Columns>
FROM <Table1> JOIN <Table2> ON <Joining Condition>
[WHERE <Condition>] [Order By ..] [Group By ..]

Ex. Find out the name of Employees working in Production Deptt.

Select Ename From EMP JOIN DEPT ON Emp.DeptNo=Dept.DeptNo
Where Dname=‘Production’;

Ex. Find out the name of Employees working in same city from where
they belongs (hometown) .

Select Ename From EMP JOIN DEPT ON Emp.DeptNo = Dept.DeptNo
WHERE City=Location;

Nested Query (A query within another query)

Sometimes it is required to join two sub-queries to solve a
problem related to the single or multiple table. Nested query
contains multiple query in which inner query evaluated first.
The general form to write Nested query is-

Select …. From <Table>
Where <Column1> <Operator>
(Select Column1 From <Table> [Where <Condition>])

Ex. Find out the name of Employees working in Production Deptt.
Select Ename From EMP
Where DeptNo = (Select DeptNo From DEPT Where

DName=‘Production’);
Ex. Find out the name of Employees who are getting more pay than

‘Ankit’.
Select Ename From EMP
Where Pay >= (Select Pay From EMP Where Ename=‘Ankit’);

Union of Tables

Sometimes it is required to combine all records of two tables
without having duplicate records. The combining records of two
tables is called UNION of tables.
UNION Operation is similar to UNION of Set Theory.

E.g. If set A= {a,c,m,p,q} and Set B= {b,m,q,t,s}
Then AUB= {a,c,m,p,q,b,t,s}

[All members of Set A and Set B are taken without repeating]
Select …. From <Table1>[Where <Condition>]
UNION [ALL]
Select …. From <Table2> [Where <Condition>];

Ex. Select Ename From PROJECT1
UNION
Select Ename From PROJECT2 ;

Both tables or output of queries must be UNION compatible i.e. they
must be same in column structure (number of columns and data
types must be same).

	More On Database & SQL �– Advanced Concepts
	Integrity Constraints
	Slide Number 3
	Implementing Primary Key Constraints
	Implementing Constraints in the Table
	Implementing Foreign Key Constraints
	Implementing Foreign Key Cont..
	Modifying Table Constraints
	Modifying Table Constrains cont..
	Viewing & Disabling Constraints
	Grouping Records in a Query
	Aggregate Functions & NULL Values
	Aggregate Functions & Group
	Aggregate Functions & Group
	Aggregate Functions & Conditions
	Displaying Data from Multiple Tables - Join Query
	Cross Join – Mathematical Principle
	Equi Join – Mathematical Principle
	Non-Equi Join – Mathematical Principle
	Natural Join – Mathematical Principle
	Implementing Join Operation in MySQL
	How to Join ?
	Using Multiple Table with FROM clause
	Using JOIN keyword with FROM clause
	Nested Query (A query within another query)
	Union of Tables

